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Abstract

One of the primary objectives of the Strategic Highway Research Program (SHRP) Long-
Term Pavement Performance (LTPP) studies is to improve the ability of highway engineers
to design new and overlaid pavement structures. The specific analyses discussed in this
report were aimed at evaluation of the American Association of State Highway and
Transportation Officials (AASHTO) pavement design equations (for both new and overlaid
pavements), based on data currently available. These initial analyses confirm that although
improvements have been made to the AASHTO design equations over the years, the
equations still do not fully explain data from North American pavements.

The evaluation of the 1993 AASHTO overlay equation was severely limited by the lack of
(1) distress and serviceability data prior to overlay, (2) knowledge as to design period and
liability level sought, and (3) some of the input data required for the design equation (which
had to approximate required data based on other available data). The evaluations were
inconclusive for asphalt concrete (AC) overlays of AC and unbonded portland cement
concrete (PCC) overlays of PCC. For the five test sections used in the evaluation, however,
the design equation for AC overlays of PCC appeared to work reasonably well.

These analyses were accomplished on the LTPP data collected through December 1992.



Executive Summary

One of the primary objectives of the Strategic Highway Research Program (SHRP) Long-
Term Pavement Performance (LTPP) studies is to improve the ability of highway engineers
to design new and overlaid pavement structures. As part of this process, SHRP has
contracted for the analysis of data collected to date for 770 in-service sections of highways in
the United States and Canada. The specific analyses discussed in this report were aimed at
evaluation of the American Association of State Highway and Transportation Officials
(AASHTO) pavement design equations (for both new construction and overlaid pavements),
based on currently available data.

These initial analyses confirm the belief that the use of the flexible pavement design equation
printed in the 1986 AASHTO Design Guide generally represents a serious extrapolation
outside the inference space from which the basic equation was derived and that its form does
not fit the data from North American flexible pavements. In addition, the equation appears
to predict much higher numbers of equivalent single axle loads (ESALs) needed to produce a
specific Present Serviceability Index (PSI) loss than occur in reality. Based on
backcalculated subgrade moduli, the equation predicted 100 times the estimated ESALs to
produce the current loss of PSI for 112 (46%) of the 244 test sections and predicted between
2 and 100 times the estimated ESALs for 97 (40%) others. Based on subgrade resilient
moduli available for 106 test sections from laboratory testing, the ratios of predicted to
estimated ESALs were reduced to 3% above 100 and 41% between 2 and 100.

The AASHTO Design Guide’s rigid pavement design equation was originally developed in
1960 at the conclusion of the American Association of State highway officials (AASHO)
Road Test. This model predicts the number of axle loads for a given slab thickness and loss
in serviceability. The original model has been extended to include several additional design
factors over the last 30 years and has been used by many highway agencies for rigid
pavement design. Owing to the limited inference space of the original Road Test model and
the subjective nature of the extensions since that time, there is considerable interest in
determining the adequacy of the model. The availability of the SHRP LTPP data has finally
made an overall evaluation possible.

The evaluation centered around determining the ability of the equation to predict the number
of 18 kip (80 kN) ESALSs, needed to cause a given loss of serviceability. The results show
that the original 1960 model generally overpredicts the number of ESALs necessary for a
given loss of serviceability. The many extensions to the original model (drainage, load
transfer, strength, etc.) generally improved the predictive accuracy, so the effect was



beneficial to the 1993 equation for design. Statistical studies indicate that the 1993 equation
is a reasonably unbiased predictor of cumulative ESALs (about one-half of the predictions
were over and one-half were under the estimates of ESALs experienced). However,
comparisons with estimated ESALs by the State Highway Agencies (SHAs) showed that the
range of predictions varied from a small fraction of the estimated ESALs to more than 10
times the estimates. These results were determined at the 50th percentile (mean) level. If a
pavement is designed at a higher level of reliability (such as 95 percent), the 1993 AASHTO
design equation will provide a conservative design for a majority of the test sections studied.
However, many deficiencies still need to be improved.

The evaluation of the 1993 AASHTO overlay design equations was conducted by comparing
the thickness designs from the AASHTO equation with constructed thicknesses. These
comparisons also considered measured distress and serviceability levels at the time of
comparison. These evaluations were limited by the lack of certain data and were considered
inconclusive for asphalt concrete (AC) overlays of AC and unbonded portland cement
concrete (PCC) overlays of PCC. For the limited data set of five test sections with sufficient
data for evaluation, the design equation appeared to provide adequate overlay thicknesses for
AC overlays of PCC.

A number of equations have been developed from the LTPP data for predicting distresses and
increases in roughness for the various types of pavements under the traffic and environmental
conditions applicable. The eventual uses for such equations are expected to be for design
and in pavement management systems. However, the lack of time-sequence data over
reasonable time periods (usually one or two data points for this analysis) and other data
limitations preclude the use of these equations for design at a sufficient confidence level at
this time. They are recommended for use only as design checks for pavement structures
designed by other procedures and possibly as placeholders in pavement management systems
until more reliable predictive equations become available.

A number of recommendations were provided for improvements to the design equations and
for ancillary studies to improve the quality of the input values. However, the overall
recommendation, apparently supported by the highway community at large, is to replace the
present application of the serviceability concept for design with a comprehensive design
system that provides direct consideration of the distress types expected to be significant.
Pavement structures may then be designed to suitably minimize all distress types rather than
just considering the composite index called PSI, which essentially considers only roughness
in any meaningful way.



Introduction

Because of the diversity of the research activities and the bulk of the text required to describe
them, this report has been produced in five volumes. The overall title is Early Analyses of
LTPP General Pavement Studies Data, but each separate report has an additional title, as
follows:

e SHRP-P-392 — Executive Summary;

SHRP-P-684 — Data Processing and Evaluation;

SHRP-P-393 — Sensitivity Analyses for Selected Pavement Distresses;

SHRP-P-394 — Evaluation of the AASHTO Design Equations and Recommended
Improvements; and

SHRP-P-680 — Lessons Learned and Recommendations for Future Analyses of
LTPP Data.

Each report can be used as a stand-alone document, but readers will find it useful to refer to
other reports for additional detail.

This document reports the results from evaluations of the American Association of State
Highway and Transportation Officials (AASHTO) design equations for flexible, rigid, and
overlaid pavements and includes recommendations for improving the equations. This work
was supported by the Strategic Highway Research Program (SHRP) Contract P-020, “Data
Analysis,” which served as the primary vehicle for harvesting the results from the first five
years of the SHRP Long-Term Pavement Performance (LTPP) studies and transforming this
new information into implementable products supporting the LTPP goal and objectives. The
research was conducted by Brent Rauhut Engineering Inc. and ERES Consultants, Inc.



The goal for the LTPP studies, as stated in “Strategic Highway Research Plans,” May 1986,
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To increase pavement life by investigation of various designs of pavement structures
and rehabilitated pavement structures, using different materials and under different
loads, environments, subgrade soil and maintenance practices.

LTPP Objectives and Expected Products

The following six objectives were established by the SHRP Pavement Performance Advisory
Committee in 1985 to contribute to accomplishment of the overall goal:

Evaluate existing design methods.

Develop improved design methods and strategies for pavement rehabilitation.
Develop improved design equations for new and reconstructed pavements.
Determine the effects of: (1) loading, (2) environment, (3) material properties
and variability, (4) construction quality, and (5) maintenance levels on
pavement distress and performance.

Determine the effects of specific design features on pavement performance.

Establish a national long-term pavement data base to support SHRP objectives
and future needs.

This research was the first to utilize the National Pavement Performance Data Base (later
renamed the LTPP Data Base) to pursue these objectives. The early products expected from
this data analysis are listed below and are related to project tasks (to be described later):

A better understanding of the effects of a broad range of loading, design,
environmental, materials, construction and maintenance variables on pavement
performance (Task 2).

Evaluation of and improvements to the models included in the 1986 AASHTO
Pavement Design Guide (Tasks 3 and 4).

Evaluation and improvement of AASHTO overlay design procedures using
data from the General Pavement Studies (GPS) (Task 5).



. Plans for future data analyses as time-sequence data for the GPS and Specific
Pavement Studies (SPS) data enter the LTPP Data Base and the LTPP Traffic

Data Base and offer opportunities for further insight and design improvements
(Task 6).

This project began with the development of tentative plans for this initial analytical effort.
These plans were presented on July 31, 1990, to the SHRP Expert Task Group on Experi-
mental Design and Analysis and on August 2, 1990, to the highway community at a SHRP
data analysis workshop. A detailed work plan was developed from the initial plans, in
consideration of comments and guidance received from these and subsequent meetings.
Guidance was furnished to the contractors throughout the research by a Data Analysis
Working Group (composed of SHRP staff and SHRP contractors), the Expert Task Group on
Experiment Design and Analysis, and the Pavement Performance Advisory Committee.

Research Tasks

The specified tasks for SHRP Contract P-020a were

® Task 1 — plan data evaluation procedure and present plans to workshop;
e Task 1A — process and evaluate data;
¢ Task 2 — conduct sensitivity analysis of explanatory variables in the

National Pavement Performance Data Base;

® Task 3 — evaluate of the AASHTO design equations;

¢ Task 4 — improvement of the AASHTO design equations;

® Task 5 — evaluate and improve AASHTO overlay procedures based on
GPS data; and

® Task 6 — plan future LTPP data analysis.

The relationships between the tasks and the general flow of the research appear in Figure
1.1. The tasks documented in this volume are Tasks 3, 4, and 5.

Data Bases Used in the Analyses

The National Information Management System (NIMS) will eventually include data for both
GPS and SPS, but only the GPS data were even marginally adequate for these early analyses.
In May 1993, the SPS data were only beginning to be entered into the NIMS for projects
recently constructed, and most of the projects were not constructed. It should be noted that
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all data collected for LTPP studies are for test sections 500 ft (152.4 m) in length and
include only the outside traffic lane.

The GPS experiments are identified and briefly described in Table 1.1. The evaluations of
the flexible pavement design equation used the GPS-1 and GPS-2 data sets, while the rigid
pavement design equation used GPS-3, GPS-4, and GPS-5 data sets. The limited data bases
available for the pavements with overlays were used for Task 5, evaluate and improve
AASHTO overlay procedures based on GPS data (see SHRP-P-393 — Sensitivity Analyses
for Selected Pavement Distresses).

It should be noted that some statisticians prefer to call the GPS experimental factorials
“sampling templates” because existing in-service pavements were used instead of test sections
that were constructed to satisfy rigorous experiment designs. However, the factorials were
established to encourage reasonable distributions of parameters expected to be significant and
test sections were sought to meet the factorial requirements. The SPS in fact follow the
requirements of designed experiments.

Table 1.1. Listing of SHRP LTPP General Pavement Studies (GPS) Experiments

GPS Experiment Brief Description No. of Projects in
the Data Base
1 Asphalt Concrete (AC) Pavement with Granular Base 253
2 AC Pavement with Bound Base 133
3 Jointed Plain Concrete Pavement (JPCP) 126
4 Jointed Reinforced Concrete Pavement (JRCP) 71
5 Continuously Reinforced Concrete Pavement (CRCP) 85
6A AC Overlay of AC Pavement (Prior Condition Unknown) oL
6B AC Overlay of AC Pavement (Prior Condition Known) 31
TA AC Overlay of Concrete Pavement (Prior Condition
Unknown) 34
7B AC Overlay of Concrete Pavement (Prior Condition
Known) 15
9 Unbonded PCC Overlays of Concrete Pavement 28




Work Plan

The work plan for the new design equations included the following:
] Accumulation of required data.

. Calculation of observed and predicted Present Serviceability Indices (PSIs) and
traffic loadings, based on observed roughness and distress data in conformance
with the procedures developed from the results of the AASHO Road Test and
historical traffic and construction data as specified in the 1986 AASHTO
Guide for Design of Pavement Structures (1), respectively.

. Initial evaluation based on graphical and statistical procedures.

. From the initial graphical evaluations, identification of specific detailed
analyses to be conducted to obtain further insight into the causes of disparities
between observed traffic and that predicted to cause the observed serviceability
losses.

] Summarization of results and identification of potential improvements.

The work plan for evaluation of the overlay design procedure included the following:

. Accumulation of required data.

. Calculation of future overlay design equivalent single axle loads (ESALs) and
overlay design serviceability.

. Calculation of an overlay design matrix based on future and effective structural
capacities.

. Evaluation of the design procedure based on a graphical procedure of

comparing current overlay serviceability to the terminal serviceability and
overlay distress.

o Summarization of results and conclusions.

Data Limitations
The six primary limitations for the data are as follows:
° Measured initial values of PSI (when the pavements were opened to traffic)
were not available because few State Highway Agencies (SHAs) measured

roughness of new pavements in the past. It was necessary to utilize either
estimates from the SHAs or estimates arrived at by other means.
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. Actual traffic measurements were available for virtually none of the test
sections; therefore, it was necessary to use estimates of cumulative ESALs
developed by the SHAs, based on rules developed by SHRP.

. The only complete set of subgrade stiffness data available was that
backcalculated from deflection data for the outer sensors, based on procedures
specified in the AASHTO Guide. Very little laboratory and backcalculated

subgrade moduli (from all falling weight deflectometer [FWD] sensors) were
available for these studies.

. Sufficient information was not available to adequately address the potential loss
in serviceability due to subgrade volume changes.

o Missing data for this early analysis limited the number of sections available for
analysis.
o Some SHAs are believed to have reported when the overall project was paid

for or when the formal “ribbon cutting” occurred, rather than when the
pavement section was actually opened to traffic.

The current estimates of initial PSI are not expected to be improved for future studies, as
continued test section monitoring will probably offer no basis for improving the estimates,
with the exception of newer sections where the time sequence profile data could be

backcalculated to estimate the initial PSI. However, future evaluations will be made with
greater values of PSI loss as the pavements deteriorate in time. Also, compensation from

estimates above and below the true values should reduce the effects of inaccurate estimates
overall.

The cumulative traffic estimates should improve greatly for future analyses as monitoring
continues because traffic data will be collected at the test section locations. Only the data for
periods before traffic monitoring began will remain uncertain—a significant limitation for the
older test sections that will soon require rehabilitation.

A more complete set of both laboratory and backcalculated subgrade resilient moduli will be
available for future evaluations, so the effects of subgrade moduli may be better evaluated.
The subgrade moduli used in these studies, however, are based on an estimation procedure
provided in the AASHTO Guide, which will be discussed in greater detail in Chapter 2.

The data required by Appendix G of the 1986 AASHTO Design Guide for determination of
serviceability loss (reduction in PSI) because of volume change in fine-grained subgrade soils
are not available. Missing are data to determine the depths of frost penetration for estimating

serviceability loss due to frost heave and the soil fabric data required for estimating the swell
rate constant.

It was necessary to use the data available to estimate serviceability losses due to volume
change in the subgrade. As most of the subgrade soils for the test sections used for these
analyses were not fine grained, the application of the procedures from the Design Guide
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produced minimal effects on study results.

While these data limitations will undoubtedly affect the evaluations of the design equations,
the shortcomings of the design equation are sufficiently serious that the causes can readily be
discerned. The limitations may have caused errors in the magnitude of the effects, but they
are not believed to have seriously affected identification of the design equation shortcomings.
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Data Sources

For the purposes of discussion, the data have been broken into two categories, observed and
estimated. Observed data include those data that have been specifically collected from the
SHRP test sections since the initiation of these studies. Estimated data are those for which
site-specific observations preceding the initiation of these studies could not be documented.
Separate discussions of the data required for flexible and rigid pavements are provided to
highlight the specific data elements required for these two design procedures. The specific
sections utilized in these evaluations of the AASHTO flexible and rigid equations are noted
in Appendices A and B, respectively, along with their corresponding properties.

Flexible Pavement Data

Observed Data

In the Flexible Pavement Design Procedure, the three data elements classified as “observed”
are as follows:

o Profile Data.
. Rut-Depth Data.
. Layer Thicknesses.

Longitudinal profile data were collected using the KJ Law Road profilometer, which records
the surface profile at 6 in. (0.15 m) intervals throughout a pavement test section. The output
from software operating on the measured profile includes the International Roughness Index
(IRI), recorded in inches per mile, and slope variance, as well as other summary statistics of
the pavement profile. IRI values were not used directly in these analyses, but slope variance
results were used to calculate the observed Present Serviceability Index (PSI). It should be
acknowledged that the slope variance data were not collected in the same fashion as those
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collected at the AASHO Road Test and used in development of the AASHTO equation.
There are undoubtedly some differences between the values of slope variance measured with
the CHLOE profilograph (utilized in the AASHO Road Test) and the KJ Law Road
profilometer. Research staff have not attempted to quantify this difference, which is
primarily a function of the difference in wheel bases between the profilograph and the
profilometer.

Rut depth data were measured from photographs of stringline projections on the pavement at
a fixed angle from the horizontal, taken at 50 ft (15.2 m) intervals throughout each SHRP
test section. The result is that a line on a photograph will vary from a straight line where
ruts exist. Measurement of departures from a straight line provide transverse profiles of a
test section at 50 ft (15.2 m) intervals. From these transverse profiles, rut depths have been
established for either 4 ft (1.2 m) or 6 ft (1.8 m) straight edges. Since 4 ft (1.2 m) straight
edges were used at the AASHO Road Test for the measurement of rut depth, the same were
used for this analysis. These measurements have been averaged over the length of the
section for use in the evaluations.

Layer thickness information has been documented through measurement of cores for bound
materials and from logging of bore holes and test pits for unbound materials. Sampling was
conducted just outside the test sections on the approach and leave ends, in the wheel paths
and between wheel paths. The thicknesses of each layer in the pavement structure were
recorded, and samples were recovered for testing the pertinent material properties in the
laboratory. Because no material sampling was conducted within the test sections, researchers
are not sure that the material layer thicknesses within the test sections are truly
representative. However, extreme variations (greater than 30 percent) from end to end were
rare, and deflection profiles (longitudinally through a test section) were available for review
when variation within a test section was suspected.

The layer thicknesses from the approach and leave ends were averaged to establish a
representative analysis section, unless differences in layer thicknesses and a review of
deflection results indicated a different representation. The layer thicknesses included in the
representative section were in turn utilized to calculate structural numbers for the test
sections, based on the procedures recommended in the guide.

Estimated Data

Estimated data generally included two types: (1) historical data not available for a specific
test section and (2) data to be collected in the future, but not yet available for these analyses.

The two data elements included under the first category were historical traffic data and initial
PSI data. Although some State Highway Agencies (SHAs) did have documented data
available, these data were rarely specific to the 500 foot (152.4 m) test sections included in
the study.

Historical traffic data were collected from the SHAs by SHRP Regional Coordination Offices
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(RCO’s) personnel. The SHAs were asked to provide the average annual daily traffic
(AADT) and total number of trucks for all lanes, as well as for the specific lane in which the
test section resides (always an outer lane). The SHAs were also asked to provide the number
of equivalent single axle loads (ESALSs) per year for the General Pavement Studies (GPS) test
lane. These traffic data were sought for each year from 1989 back to the year when each
particular section of highway was opened to traffic. Most SHAs have records of the two-
directional AADT for a given highway, but records have rarely been collected near an long-
term pavement performance (LTPP) test section and are not lane-specific. All traffic data
were screened to identify potential errors in the estimates. Specifically, section opening
dates were compared to the first year of traffic data, and checks were made for random
missing years of traffic. A check was also made to compare annual ESALSs to the annual
number of trucks to ensure that the truck factor remained reasonable. If the truck factor
appeared unreasonable, the SHRP RCO was asked to verify the data. Site-specific traffic
data will be collected in the future, so the precision of the traffic data may be expected to
increase with time to the benefit of future analyses.

Since the SHAs are most familiar with the relative roughness of their newly constructed
highways, the agencies were requested to provide initial PSI estimates specifically for this
analysis. They were also asked to provide any historical roughness data (Mays Meter
readings, Ride Quality Index [RQI] data, or Ride Comfort Index [RCI] data) that were
considered representative of their LTPP test sections. Where historical roughness data had
been collected, correlations were sought to tie this information to PSI and to backcast, where
necessary, to the date of opening. Backcasting for a test section involved linear regression
with the log of PSI versus time for the data values available, and extrapolation of the
resulting line back to the date of opening. Where sufficient time series data were not
available, the SHA estimates were used. The mean value of the initial PSI estimates for the
244 test sections used in the analysis was 4.25 and the standard deviation was 0.23.

Certain checks were applied while processing the historical roughness data to minimize the
impact of suspect data. Considering that the range of PSI values is from 0 to 5.0 with 4.2
being the average initial PSI value for flexible pavements at the AASHO Road Test, no
values were allowed to be less than 3.5 or greater than 5.0. When backcasting, the
regression line was expected to have a negative slope, but a positive slope up to 0.01 was
allowed to represent zero roughness change with time. Also, roughness data output from the
SHRP GM profilometers were used as a check on those sections for which time series data
were provided (to ensure that the trend was consistent with observations currently being
collected). Where the procedures above resulted in reasonable PSI values, the values were
used. Where the checks were not satisfied, a value of 4.2 was used.

Subgrade stiffness values fell into the second category of estimated data. Although measured
resilient modulus data will ultimately be available from laboratory test results and stiffnesses
will be backcalculated from deflection testing results for all the sections, both were only
partially available for inclusion in these analyses. In lieu of these data, subgrade moduli

were estimated from measured deflections at the outer sensor locations, in accordance with
the guidelines set forth in the Guide.
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The following equation provides for prediction of in situ subgrade layer moduli in Part III-
5.2.3. of the 1986 Guide:

= _f 2.1
ESE drl' ( )
Where:
E, = in situ moduli of elasticity of the subgrade layer,
P = the dynamic load (approximately 9,000 lbs or 40 kN) of the nondestructive
testing (NDT) device used to obtain deflections,
d, = the measured NDT deflection at a radial distance of r from the NDT plate

load center,

radial distance from plate load center to point of d. measurement (r = 60 in.

or 1.5 m), and

S; = the subgrade modulus prediction factor (a value of 0.2792 was assumed for
this research).

ﬁ
I

Preliminary evaluations of these values versus laboratory resilient moduli available to date
are discussed further in Chapter 4. As more laboratory and backcalculated values for
subgrade stiffness become available, it will be possible to complete these evaluations of the
Guide’s recommendations for estimating these values, and to more thoroughly evaluate how
use of any of the three affects the predictions of the design equation.

As shown in Figure 2.1, the mean value of those subgrade moduli estimates was 41.1 ksi
(283 MPa) and the standard deviation was 24.0 ksi (166 MPa). As can be seen from the
distribution, over 50% of the sections had moduli values between 20 and 40 ksi (138 and 276
MPa), which was considerably in excess of the 3 ksi (21 MPa) noted at the AASHO Road
Test. The minimum value estimated for these LTPP test sections was 12.4 ksi (84.7 MPa).
The maximum value was 195 ksi (1343 MPa), but such extremely high values were for
sections with a rock subgrade.

Similarly, it can be seen from Figures 2.2, 2.3, and 2.4 that the mean asphalt thickness was
6.5 in. (16.5 cm), the mean age was 11 years, and the mean traffic loading was 208
KESALs (1000 ESALs) per year.
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Rigid Pavement Data

Observed .Data

PCC Slab Thickness

The mean slab thickness values available from the SHRP material testing data used for each
section. The distribution of slab thicknesses for JPCP, JRCP, and CRCP considered in the
evaluation data set is shown in Figure 2.5. It can be seen that the thicknesses in the data set
are not uniformly distributed. Approximately 62% of the JRCP sections have a thickness
range of 9 to 10 in. (22.9 to 25.4 cm) and 52% of CRCP sections have thicknesses of 8 to 9
in. (20.3 to 22.9 cm). Only JPCP sections are well distributed: 35 percent have thicknesses
of 6 to 9 in. (15.2 to 22.9 cm); 35 percent, 9 to 10 in. (22.9 to 25.4 cm), and 30 percent, 10
in. (25.4 cm) and thicker.

Distribution of Pavement Thickness
M jrcr JRCP CRCP

25
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Number of Sections

<6 6-7 7-8 8-9 9-10 10-11 >11
PCC Thickness (in)

Figure 2.5. Distribution of PCC Thicknesses

PCC Modulus of Elasticity

The SHRP LTPP Data Base contains material testing data that include PCC compressive
strength, split cylinder tensile strength, and modulus of elasticity. The moduli of elasticity
obtained from the testing database were used in the analysis. The mean of all these tests was
4,600 ksi (31,700 MPa), while the values ranged from 2,800 to 6,800 ksi (19,300 to 46,900
MPa).
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Pavement Age

The pavement age ranges from 2 to 27 years with a mean of 12 years. The pavement
sections considered in the analysis data set are well distributed between 5 to 20 years. The
distribution of pavement age is shown in Figure 2.6.
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Figure 2.6. Distribution of Pavement Ages in the Analysis Data Set

Estimated Data

Estimates of actual cumulative KESALs as developed by the SHAs were used. The mean
KESALs/year of age was computed for each section to provide an idea of the rate of loading
on the sections. A distribution is shown in Figure 2.7 for all sections (mean = 352, range
= 14 to 1813 KESALs/year).
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Figure 2.7. Distribution of Mean KESALs/Year in the Analysis Data Set
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Data Processing

The data sources discussed in Chapter 2 were used to calculate the observed and predicted

Present Serviceability Index (PSI) losses as well as predictions of traffic loadings based on

observed PSI loss to date. Calculations for each of these will be discussed in greater detail
in the following.

Flexible Pavement Data Processing

Observed PSI Loss

As noted in the AASHO Road Test Report 5 (2), the current PSI for a given section of
flexible highway can be calculated from the average slope variance, average rut depth, and
cracking and patching. The equation can be written as follows:

PSI = 503 - 191 log (1 + SV) - 1.38 RD? - 0.01 /C+P G.1)

Where:

= average slope variance from both wheel paths as collected by the
CHLOE profilograph;

average rut depth from both wheel paths based on a 4 ft (1.22 m)
straight edge, in inches;

= square feet of Class 2 and Class 3 cracking per 1,000 ft® (92.9 m?); and
= patching in square feet per 1,000 ft* (92.9 m?).

"N @I fgl

This equation, commonly used in the past to estimate PSI, was developed to model pavement
serviceability ratings collected by a panel of raters at the AASHO Road Test.

The multiple squared correlation coefficient (r*) for Equation 3.1 was 0.844, and the root
mean square error (RMSE) of prediction was 0.38.
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Cracking and patching were not included in the calculation of the current PSI for the test
sections. Significant quantities of cracking and patching were noted on only a few of the test
sections, and the impact of this term was not considered significant, because its coefficient is
only 0.01. The mean value of current PSI was 3.53, with a standard deviation of 0.49.

Observed PSI loss is then the difference between the initial PSI and the results of Equation

3.1 above. The mean value for observed PSI loss was 0.70, and the standard deviation was
0.51.

Predicted PSI Loss

As the variables required to calculate G, in the following equation developed from data at the
Road Test are known, the equation can be used to calculate APSI:

G, - Log (A_P_S_I) (3.2)
2.7
Where:
G = B (logW -logp);
W = the number of 18 kip ESAL’s;
i) = 0.64 (SN + 1)°3¢;
B = 0.4 + 1094/(SN + 1)*%;
SN = a,D,+a,D,m+ A;D;m; + ...... + a, D, m,;
D, = thickness of layer i, in.;
a, = structural coefficient for the material in Layer i; and
m; = drainage coefficient for the material in Layer i.

Structural numbers (SNs) for these sections are based on the results of the materials testing
data discussed in Chapter 2. From these data the thicknesses and material types for each
layer in each section were determined. The structural layer coefficients a, would ideally be
based on resilient moduli from laboratory testing corrected for temperature effects. With no
stiffness information available at the time of the analysis, the structural coefficients used in
calculating the structural number were selected based on the material types noted from lab
testing and the guidelines provided in the 1986 Guide for the associated material types (Table
3.1). Drainage coefficients (m,) were selected based on drainability (as a function of material
gradations) and exposure to moisture (as a function of the average annual rainfall), as later
modified in the 1986 Guide.
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Table 3.1. Structural Layer Coefficients Used In Analysis

|| Material Type | Coefficient (a,) “
$

Dense-graded Asphalt Concrete 0.44
Bituminous Bound Bases 0.34
Non-bituminous Bound Bases 0.23
Unbound Granular Bases 0.14
Subbases 0.07

Stabilized Subgrades 0.15 i

As noted under Section 2.4.1, “Drainage,” of the 1986 AASHTO Guide, recommended
values of m,; range from 1.4 (for sections with excellent drainage and less than 1% exposure
to moisture levels approaching saturation) down to 0.4 (for sections with very poor drainage
and levels approaching saturation more than 25 percent of the time). It should be noted that
this drainage coefficient is only applied to unbound layers of the pavement structure, as noted
in the 1986 Guide. Although specific information regarding the quality of drainage and/or
the percentage of time the pavement structure is exposed to moisture levels approaching
saturation is not available, the material gradation information and average annual rainfall data
were used to approximate these values in the following fashion. If exposure to moisture
varies from a value of 1.2 to 0.6, and the quality of drainage is similarly set for the same
range, then the product of these two values will range from 1.44 to 0.36 (encompassing the
range specified in Table 2.4 of the 1986 Guide). Utilizing the ranges noted above, a linear
function can be established for calculating these values for each section as follows:

S, = 12 - 0.6 (AAR) (3.3)
and

D, = 12 - 0.6 (P200) (3.4)
Where:

S, = the saturation level,

AAR = the average annual rainfall in inches/100,
D, = the drainage quality, and
P200 = the percentage of material passing through a No. 200 sieve/100.

Based on the procedures outlined above, calculated values of m, ranged from 1.44 to 0.56
with an average of 0.97 and a standard deviation of 0.2.
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The AASHO equation, Equation 3.2, was further modified in 1972 (3,4) to accommodate
variations in environmental region and soil support as follows:

G, 1 3.5)
Log W =Logp + F + Log R + 0372 (S-3)
Where:
R = regional factor (ranging from 0.5 to 3), and
S = soil support (ranging from 3 to 7).
The equation was again modified in 1986 (1) as follows:
Gt
Log W =Z, xS, +Log p + 3" 2.32 Log M, - 8.07 (3.6)
Where:
Zy = standard normal deviate;
S, = overall standard deviation; and
M, = laboratory resilient modulus, psi.

As the equation was being used for research rather than design, a 50% reliability was
selected as appropriate for mean predictions. At 50% reliability Z, = 0, and this term drops
out of the equation.

Equation 3.6 was used to predict the total KESALs (1000 ESALSs) required to cause the
observed losses in PSI.

Resilient moduli for the subgrade (M,) were estimated based on the procedure provided in the
1986 Guide (see Equation 2.1). It should be noted that this procedure does not consider
seasonal effects, so the subgrade moduli were not entirely consistent. However, the
differences in magnitudes that would have occurred from seasonal adjustments would not
have made an important difference in the results.

Historical traffic data provided by the State Highway Agencies (SHAs) (see “Estimated
Data” in Chapter 2) were used for the traffic data (W) in these calculations. The cumulative
KESAL:s for each section were divided by the number of years since the test section was
opened to traffic to obtain average values per year. This allowed extrapolation of the extra
year or two beyond 1989 to estimate a traffic level associated with the date of performance-
monitoring activities. Most of the monitoring data used were obtained in 1990 or 1991.
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Rigid Pavement Data Processing

The LTPP data base was used to obtain input data to predict KESALs carried for the
measured loss of serviceability for each section under GPS-3, GPS-4 and GPS-5. Each data
element used for this evaluation is described. The data limitations and their distribution in
the evaluation data set are also discussed.

The pavement sections in the SHRP LTPP data base were divided into four broad climatic
zones. These are wet-freeze (WF), wet-no freeze (WNF), dry-freeze (DF), and dry-no
freeze (DNF) regions. The LTPP data base consists of 122 JPCP, 70 JRCP, and 85 CRCP
sections located throughout the United States and Canada. A variety of information is
collected for each section including climatic, material properties, traffic loads, profile,
distress, and numerous other types of data. At the time of this analysis, the data required for
the evaluation of the AASHTO concrete pavement design model were not available for all
sections. Only 54 JPCP, 34 JRCP, and 32 CRCP sections existed for which all the required
data for the evaluation of the AASHTO models were available. Tables 3.2, 3.3, and 3.4
show the distribution of the analysis data set based on the factorial design used to describe
GPS-3, 4, and 5 experiments, respectively.

Initial Pavement Serviceability

The initial serviceability values (when the pavement was opened to traffic) for the specified
500 ft (152 m) sections were not measured at the time of construction. Estimates were
obtained from SHAs of their typical initial serviceability values. Figure 3.1 shows the mean
estimated initial serviceability for JPCP, JRCP, and CRCP in each of the climatic regions.
The mean initial serviceability value obtained from all these estimates was 4.25. This value
is slightly less than the 4.5 mean value used for all the original Road Test sections. Another
consideration is that quite a number of the newer sections had current serviceability values
higher than 4.25. The main analysis conducted herein used the 4.25 mean value for all
sections since this value was the mean provided by the SHAs, but 4.5 was used later to show
its impact on the results.

Current (or Terminal) Pavement Serviceability

The current pavement serviceability was calculated using the same regression equation
developed by Carey and Irick (5) and used at the AASHO Road Test:

PSI = 5.41 - 1.80 log (1 + average SV) - 0.09 (C + P) 3.7)
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Table 3.2. Analysis Data Set Design for JPC Pavements.

Moisture Wet Dry
Temperature Freeze No Freeze Freeze No Freeze
Subgrade Type F Cc F C F C F (o
Traffic Rate LH[LH[LH[L|H[L{H[L|E[L[H]L]H
Base Type |PCC Thickness |Dowels Number of JPCP Sections in the Analysis Data Set
L N 1§11 1 1
Granular Y 212(2 2|1
H N 112]1 1 1|1
Y 1111
L N 1 1 212 1 12
Stabilized Y 2|1 1 1
H N 1 1111
Y 2|1 1 1{1}1
Table 3.3. Analysis Data Set Design for JRC Pavements.
Moisture Wet Dry
Temperature Freeze No Freeze Freeze No Freeze
Subgrade Type F (o] F Cc F C F C
Traffic Rate LHLHLHLELH[L HIL|H]L [H
PCC Thickness |Joint Spacing Number of JRCP Sections in the Analysis Data Set
L L 21142 1 -1-1-1-
H 21212 2 -l -1-1-
H L 1j2§12]1 1 -1-1-1-
H 211111212 2111 -1-1-1-
Table 3.4. Analysis Data Set Design for CRC Pavements.
Moisture Wet Dry
Temperature Freeze No Freeze Freeze No Freeze
Subgrade Type F Cc F C F C F C
Traffic Rate LHLHLHL [H[L [H|L |H|L H]L |H
PCC Thickness |% Reinforcement Number of CRCP Sections in the Analysis Data Set
L L 111 ij1|12)1j1}1 1 11212
H 111 1
H L 1 2|1]2 21311
H




Initial Serviceability Estimate

Initial Serviceability
S = N W

W-F W-N-F D-F D-N-F
Regions

Figure 3.1. Mean Estimated Initial Serviceability for Each Climatic Region
and Pavement Type

Where:
sV = average slope variance from both wheel paths as collected using the
CHLOE profilograph,
C = sq ft of Class 3 and Class 4 cracking per 1,000 sq ft (92.9 m?), and
P = AC and PCC patches in sq ft per 1,000 sq ft (92.9 m?).

At the AASHO Road Test, Class 3 cracks were defined as those opened or spalled at the
surface to a width of 1/4 in. (6.4 mm) or more, over a distance not less than half the length
of the crack. Sealed cracks were defined as Class 4 cracks. Based on this definition, an
estimate of cracking and patching for each section was obtained from the SHRP LTPP data
base. The mean slope variance for each section was calculated with the profile data. The
estimated current PSI was calculated from the data by Equation 3.7. In order to calculate
the predicted KESALs for comparison with the actual KESALSs, the current pavement
serviceability was used as the terminal serviceability (p,).

The distributions of cracking and patching in the analysis data set are shown in Figures 3.2
and 3.3 respectively. There is a relatively low amount of these distresses in most of the
pavements. The distribution of current slope variance for different types of pavements is
shown in Figure 3.4. With the mean initial serviceability and the current serviceability
known, the measured loss in PSI can be calculated as follows:

APSI = Mean Initial Serviceability - Current Serviceability. (3.8

Mean existing serviceabilities and serviceability losses for JPCP, JRCP, and CRCP in

different regions are shown in Figures 3.5 and 3.6. This measured loss in PSI is used in
the AASHTO design equation to predict ESALs.
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Figure 3.2. Distribution of cracking in the analysis data set
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Figure 3.3. Distribution of patching in the analysis data set
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Mean Pavement Serviceability
pcp B JrCP CRCP

Serviceability
woow
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Figure 3.5. Mean Measured Current Serviceability by Climatic Regions in 1989-91

Mean Serviceability Loss
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Figure 3.6. Mean Measured Loss in Serviceability by Climatic Regions

Modulus of Subgrade Reaction

Plate load-bearing tests were not conducted on the LTPP sections; therefore, for this analysis
the measured deflections from falling weight deflectometer (FWD) testing were used to
backcalculate the modulus of subgrade reaction k for all the sections. A computer program
was developed for the backcalculation of concrete pavement. layer properties based on
equations from Hall (6), which were developed for application to the SHRP FWD seven-
sensor arrangement. The mean dynamic k-value was obtained for each section with this
computer program, and then reduced by a factor of two to estimate the static plate bearing k-
value (7). The static k-value determined in this manner is essentially that on top of the
subgrade since it is based on the maximum deflection measured. The principles behind this
methodology are also described in Part III, Chapter 5 of the 1993 AASHTO Design Guide.
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A distribution of the estimated static k-value on top of the subgrade determined for the LTPP
sections is given in Figure 3.7.

In accordance with the AASHTO design procedure, in the cases where it was necessary, the
estimated static k-value on top of the subgrade was adjusted to account for the presence of a
stabilized base layer and/or loss of support (LOS). For the pavements with a stabilized base,
the k-value on top of the base was determined with the equation that was used to develop
Figure 3.3 of the AASHTO Design Guide (Equation LL.1, AASHTO Guide for Design of
Pavement Structures, Volume 2, Appendix LL). Since the subgrade resilient modulus, Mg,
is a required input for this equation and was not available in the data base at the time of this
analysis, it was estimated from the backcalculated static k-values on top of the subgrade,
using Equation 3.9 below. The development of Equation 3.9 is described in Appendix HH
of Volume 2 of the AASHTO Guide.

kK = R (3.9)

For each of these sections, the estimated subgrade My and the typical stabilized base elastic
modulus value were used to determine the composite k-value from Equation LL.1 of Volume
2 of the Guide. Where necessary, a loss of support (LOS) factor was then used to correct
the composite k-value based on Figure 3.6 of the AASHTO Guide. Table 3.5 shows the
typical base elastic modulus values (Ebase) and the LOS values that were used in these
calculations. The values are based on guidelines provided in the AASHTO Guide.

Distribution of Static k-value
wcp B Ircp CRCP

&

[
[=]

[y
(¥}

i
(=]

W

Number of Sections
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<50 50-100 100-200 200-300 >300
Static k-value (psi/in)

Figure 3.7. Distribution of Backcalculated Static k-Value of Subgrade
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PCC Flexural Strength

The AASHTO model requires the mean flexural strength value determined at 28 days from a
third-point loading test. This value, not available in the SHRP database, was estimated by
first using Equation 3.10 to calculate the flexural strength from current core splitting tensile
strength (7).

S, = 102 f+210 (3.10)

C

Where:
f,

splitting tensile strength of concrete core (at age of coring section), psi.

In order to obtain an estimate of the 28 day PCC flexural strength, multiple regression
Equation 3.11 (based on data ranging from 3 days to 17 years) was used (8):

F, = 122 +0.17 log,, T - .05 (log,, T)* 3.1
Where:
F, = ratio of the flexural strength at time T to the flexural strength at 28
days; and
T = time since slab construction, years.

The flexural strength is then estimated at 28 days using the following expression:

S
S = () (3.12)
FA
Where:
S’ = flexural strength at time T; and
S’ = flexural strength at 28 days (third-point loading).

The mean estimated 28 day flexural strength for all data was 735 psi (5.07 MPa), with a
range of 543 to 1070 psi (3.74 to 7.38 MPa).

Load Transfer Coefficient

The appropriate load transfer coefficients, J, based on the type of load transfer device and
shoulders in a section, were used. Recommended load transfer coefficients for various
pavements and design conditions are given in Table 2.6 of the 1993 AASHTO Design Guide.
Table 3.6 shows the load transfer coefficient values used for the analysis.
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Table 3.5. Base Elastic Modulus and LOS Values Tested

Base Type Permeable LOS Ebase (ksi)
Unbound Yes 0.50 20
No 1.00 20
Cement Treated Yes 0.25 600
No 0.75 1000
Asphalt Treated Yes 0.25 800
No 0.50 500
Lean Concrete Yes - -
No 0.25 1500

Table 3.6. Load Transfer Coefficients, J

Shoulder Type AC Tied PCC
Pavement Type Dowels Load Transfer Coefficient
JPCP N 4.10 3.90
Y 3.20 2.80
JRCP N 4.10 3.90
Y 3.20 2.80
CRCP - 3.05 2.60

Drainage Coefficient

The climatic zone in which a section is located and the quality of internal drainage was used
to determine the value of the drainage coefficient, Cd. Recommended values of drainage
coefficients for concrete pavements are given in Table 2.5 of the 1993 AASHTO Design
Guide. Tables 3.7 and 3.8 were developed based on recommendations in the AASHTO
Guide and procedures that were developed to best estimate the drainage coefficient for the
sections (9).

General Comment

It is important to understand that all these inputs were selected as much as possible on the
basis of AASHTO guidelines for design because these guidelines are used by pavement
designers. Thus, many of these procedures were taken directly from the AASHTO Design
Guide tables.
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Table 3.7. Drainage Coefficient for Pavements With Permeable Blanket Drains

Moisture Wet Dry
Type of Drains Drainage Coefficient
Permeable Blanket Drains 1.10 1.20
No Permeable Blanket See Table 3.8 See Table 3.8
Drains

Table 3.8. Drainage Coefficients for Pavements Without Permeable Blanket Drains

Moisture Wet Dry
Temperature Freeze | No Freeze Freeze | No Freeze
Subgrade Type F [c [F J[c [F Jc [F |c
Base Type Type of Drains ' Drainage Coefficient
Granular No Longitudinal 0.70{0.90]0.80|1.00| 090 1.10} 1.00 { 1.20
Longitudinal 0.8011.0010.90]1.10[0.95] 1.15]1.10] 1.25
Stabilized No Longitudinal 0.80]1.00/0.9011.10]1.00}41.15]|1.10] 1.25
Longitudinal 0.90]1.1011.00| 1.20{1.05}| 1.15| 1.201 1.25




Evaluation of the Flexible
Pavement Design Equation

Comparisons of Predicted Versus Observed Traffic

The work activities composing the evaluation consisted of a number of separate analyses,
depicted in the flowchart in Figure 4.1. Data accumulation has been described in Chapters 2
and 3, so this discussion begins with calculation of the predicted KESALs (1000 ESALs) to
cause the observed serviceability loss. Figure 4.2 provides a plot of predicted KESALSs
versus those estimated by the SHA’s through 1989 and extrapolated through 1991. As can
be seen, the traffic predicted by the AASHTO equation is consistently much higher than the
estimates of historical traffic provided by the SHAs. From Figure 4.3, which provides the
distribution of ratios of predicted to observed KESALS, it can be seen that only 9 of the 244
predictions were lower than the estimates by the State Highway Agencies. Almost half of
the estimates (112) predicted traffic levels more than 100 times the SHA estimates. Note
that the average ratio (8770) and standard deviation (51,800) are distorted by several sections
where this ratio exceeded 100,000.

This extreme lack of fit of the design equation to the in-service data is not entirely due to
shortcomings of the equation itself. Limitations of the input data (discussed in Chapters 1, 2,
and 3) are also believed to have contributed to the apparent differences between predicted
and estimated ESALs. The future availability of ESALs estimates that would include some
years of measured data, plus higher values of A PSI (Present Serviceability Index), should
allow a somewhat more accurate evaluation of the deficiencies in the equation itself.

Studies to Examine Fit of the AASHTO Design Equation to Observed
Data

As one of six separate studies to explain the causes of the poor predictions, linear regressions
were conducted using the AASHTO equation form shown in Equation 3.6 and the pertinent
data for the 244 test sections. No significant fit could be obtained for this equation form.
The coefficient of determination (R?) never exceeded 0.25 and the root mean square error
never went below 0.4.
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KESALS Predicted by the AASHTO Equation

Figure 4.2. SHA Estimates of Historical Traffic Versus AASHTO Predicted Traffic
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Figure 4.3. Distribution of Ratios of Predicted to Observed Traffic
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Comparisons of Inference Spaces for the AASHO Road Test and the LTPP Data
Base

From the evaluations of fit, however, it was established that there were several influential
observations (sections for which the properties at those locations and their impact on
predictions of traffic and/or serviceability loss at those locations significantly affected
evaluations of the AASHTO model’s ability to fit these data). Further evaluation of these
influential observations indicated that some characteristics of these test sections fell outside of
the inference space of the original AASHO equation. Modifications to the AASHTO flexible
design equation over the years were intended to broaden the inference space for the
AASHTO design equation.

Table 4.1 presents calculated values of PSI loss, using the AASHTO flexible pavement
design equation for a factorial of subgrade resilient moduli, cumulative KESALSs, and
structural numbers. Because the resilient modulus of 3,000 psi for the subgrade is that used
for the road test analyses, the group of results for this resilient modulus should best represent
the inference space for the Road Test data. As can be seen, unreasonable results were
obtained for structural numbers of 2 or 3, both of which are within the inference space of the
Road Test. Although also well within the inference space, values of cumulative KESALSs of
500 and 1,000 gave unreasonable predictions for structural numbers of 2 or 3.

Although out of the inference space for the Road Test, an increase of the subgrade resilient
modulus to 10,000 psi decreased the magnitudes of the unreasonable predictions, as might be
expected, but these predictions are still unreasonable. Use of 50,000 psi reduced the
predictions to unreasonably small magnitudes. From this simple study, it was apparent that
the design equation is capable of unreasonable predictions, even when the variable
magnitudes fall within the inference space for the data used for its development.

Similarly, it can be seen from Figure 4.4 that most of the test sections in the SHRP Data
Base (180 or 74% of the sections) have currently experienced a loss in PSI of 1 or less.
This loss is obviously much less than the PSI loss experienced by similar pavements at the
road test, which were trafficked to failure (with PSI losses of 2 to 3). Further, the average
absolute deviation of observed PSI from the computed curves at the AASHO Road Test was
0.46 (10), so it can be seen from Figure 4.4 that 95 of the 244 test sections (39%) have
currently experienced losses in PSI within the “noise” at the Road Test.

Effects of Extrapolation Beyond the AASHO Road Test Inference Space

Recognizing the potential impact of these inference space limitations, the data set was pared
down and regressions rerun to see if better fits could be established. The three data sets
(including the full data set as No. 1) were
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Data Set Test Section Exclusions Included in Data Set

1 None 244
SN <2

2 SN > 6 168
ESALs > 5,000,000

3 Avg. Ann. Rainfall < 25 in. 37

Avg. Ann. Rainfall > 60 in.
Avg. Ann. Freeze Days < 100

These exclusions were made to better approximate the environmental conditions at the

AASHO Road Test. Even with these limitations, however, no significant improvements in
the fit resulted. The R? continued to be less than 25%.

Table 4.1. Factorial of Solutions for Predicted PSI Loss From Equation 3.6

Structural Number (SN)
Mr Cumulative

(PSI) KESALs 2 3 5 7 10
100 | 0.24 0.11 0.04
3000 500 0.55 0.22 0.07
1000 0.77 0.30 0.10
5000 1.73 0.59 0.19
10,000 » 2.44 0.80 0.25

100 0.03 0.03 0.06 0.03 0.01
10,000 500 0.14 0.07 0.02
1000 0.19 0.09 0.03
5000 0.43 0.18 0.06
10,000 0.60 0.24 0.08
100 0.00 0.00 0.01 0.01 0.00

500 0.00 0.00 0.02 0.01 0.01
1000 0.00 0.00 0.03 0.02 0.01

50,000

5000 0.06 0.03 0.07 0.04 0.01
10000 1.03 0.08 0.09 0.05 0.02

Note: Shaded copy represents suspect loss values.
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Figure 4.4. Distribution of Observed PSI Loss

Regressions of Ratios of Predicted to Observed Traffic

In an effort to identify why a better fit could not be obtained, linear regressions were
conducted to model the ratio of predicted to observed traffic (R). This step allowed
identification of variables not included in the AASHTO design equation that are needed to
better predict the traffic required to cause the observed serviceability losses. The resulting
model for R (the coefficient of determination R?> = 0.77) was a function of average annual
rainfall, average annual number of days below freezing, subgrade modulus, serviceability
loss, structural number, and the thickness of existing seal coats. From previous discussions
in this report and others, the significance of environmental variables is not surprising.
Attempts have been made through the years since the Road Test to include environmental
effects through various revisions to the original equations, but these attempts do not appear to
have been sufficient, and some additional environmental variables are needed.

The subgrade moduli were estimated using only Sensor 7, as discussed in Chapter 2. Also,
the relatively minor serviceability losses experienced by test sections included in the database
thus far, as compared to the much higher serviceability losses at the Road Test overall,
should be expected to play a significant role in this lack of fit. At the AASHO Road Test,
most of the sections experienced serviceability losses in the range of 2 to 3, whereas the
SHRP data base only includes three such sections (see Figure 4.4). Because few highway
pavements are currently allowed in practice to deteriorate to the levels at the Road Test, it
appears clear that the experience of the Road Test does not represent today’s in-service North
American highways.
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It is generally recognized that the structural number concept has some theoretical flaws. For
example, with a structural coefficient of 0.44 for an asphalt layer and a structural coefficient
of 0.14 for an unbound granular base, it is implied that 1 in. (2.54 cm) of asphalt is
equivalent to 3.14 in. (7.98 cm) of granular base. This ratio is, in fact, affected by many
factors, not the least of which are the stresses to which the layer is exposed (i.e., its position
within the total pavement structure).

Effects of Subgrade Moduli

Although resilient modulus testing of the subgrade was just getting underway at the time of
the analysis, enough data were available to explore this subject a little further. It can be seen
from Figure 4.5 that backcalculated moduli are considerably higher than the resilient moduli
measured in the laboratory at a deviator stress of 2 psi (0.014 MPa) and a confining pressure
of 2 psi (0.014 MPa). This stress state was selected for these comparisons as being the one
utilized in the testing that was most representative for the first three feet of subgrade under a
9 kip (40 KN) wheel load. The mean ratio of estimated values to laboratory values is 4.48
for the 106 observations available. Assuming that subgrade moduli estimated from only the
Sensor 7 deflections will generally average around 4.5 times the laboratory resilient moduli
for the same materials tested at a similar stress state, it is fairly obvious that this extrapolates
the design equation far outside its inference space. (A laboratory resilient modulus of 3,000
psi [20.7 MPa] was identified for the subgrade soils at the Road Test and was used in the
extension of the 1986 Flexible Design Equation.) In order to learn whether use of resilient
moduli obtained from laboratory moduli would improve the predictive capabilities, the
estimated moduli were divided by 4.48 and the predictions repeated. Figure 4.6 displays the
distributions of the ratios of predicted to observed traffic when the estimated subgrade moduli
were used (identified as “Unmodified” — same distribution as in Figure 4.3) and when the
backcalculated moduli were divided by 4.48 to approximate laboratory resilient moduli.

It can be seen from Figure 4.6 that use of the approximations to laboratory moduli
considerably reduced the differences between the SHA estimates and the predictions of traffic
from the AASHTO equation. The predictions for 40% of the 244 test sections were less than
the SHA estimates and predictions for 12% ranged from one to two times their SHA
estimates, but the predictions for the remaining 48% of the test sections ranged from two to
over 100 times the SHA estimates. Although it appears clear that use of the resilient moduli
obtained from laboratory testing could be expected to greatly improve the predictive
capabilities of the design equation, the AASHTO equation still does not appear to adequately

model the serviceability loss for the North American pavements in the SHRP LTPP Data
Base.

Later, when subgrade moduli data were available for 106 of the 244 test sections being
studied, these data were utilized to evaluate the various sources of subgrade moduli
information available and their impact on the design equation. By limiting the analysis to
these 106 sections, it can be seen from Figure 4.7 that the use of the laboratory subgrade
moduli data considerably reduced.the overpredictions produced by the use of the estimated
subgrade moduli from deflection data. The use of the laboratory subgrade moduli data also
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reduced the number of underpredictions. As expected, there are fewer sections with a ratio
of less than one based on actual laboratory data than those identified by the scalar shift of
subgrade moduli (by a factor of 4.48). The laboratory values appeared to provide the most
reasonable evaluation of the design equation, but even with laboratory data it is still evident
that many (almost 50 percent) of these test sections with laboratory subgrade moduli have
predicted traffic levels in excess of a factor of two above those observed. Even with the best
subgrade moduli data available, the equation still appeared to significantly overpredict.

Impact of Subgrade Volume Changes

In a final attempt at explaining the discrepancies in fit, steps were taken to estimate the loss
in PSI due to subgrade volume changes and subtract them from the observed losses, based on
the following equations from Appendix G of the 1986 Guide:

APSI, = 0.00335 * V, * P  x (1 -e™®) @4.1)

Number of Sections

<=1 1.01-2.00 2.01-6.00 6.01-10.00 10.01-100 >100
Ratio of Predicted to Observed KESALS

| Lab Mr Mr/4.48 IBll Est. Mr

Figure 4.7. Distribution of Predicted to Observed Traffic Comparing
Laboratory Subgrade Moduli to Estimates From Various Sources
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Where:
APSI,,, = serviceability loss due to roadbed swelling;

Vi = potential vertical rise, inches;

Py = swell probability, % of total area subject to swell;
0 = swell rate constant; and

t = time, years.

Similarly, it is noted in Appendix G that:

APSI;; = 0.01 = P, x APSI,,, (1-e™002¢t) 4.2)
Where:

APSIz; = serviceability loss due to frost heave;

Pe = frost heave probability, (% of total area subject to frost heave);

APSIL,x = maximum potential serviceability loss;

[0) = frost heave rate, mm/day;

t = time, years.

As discussed in Chapter 1, under “Data Limitations,” all the data necessary to fully address
these volume change phenomena are not available. Attempts have been made, however, to
estimate these values based on the information available (plasticity index, average annual
rainfall, average annual number of days below freezing, and soil gradations). As can be seen
from Figure 4.8, the subgrade soil volume change corrections affect only a few sections.

Only 14 test sections were identified that would be expected to experience serviceability loss
due to roadbed swelling. The highest serviceability loss due to swelling was 0.5, leaving
only 0.3 due to traffic. The mean serviceability loss was 0.17 for the 14 test sections, and
the mean effect for the entire data set of 244 test sections was a serviceability loss of 0.01.

For the 99 test sections estimated to be susceptible to roughness due to frost heave, the
highest serviceability loss calculated was 0.14; the mean for these 99 test sections was 0.03,
and the mean for the 244 test sections was 0.01.

Considerable time was spent applying the procedures in Appendix G of the Design Guide as

well as they could be applied with the data available, but the effects appear to be
insignificant for this evaluation of the AASHTO flexible design equation.
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Recommendations

If serviceability loss is to be used as a basis for future design procedures, attempts should be
made to improve the handling or incorporation of environmental and pavement structure data
in pavement performance models. Several variables were identified in studies conducted here
that significantly contribute to the disparity between predicted and observed performance.
These specific variables were average annual rainfall, average annual number of days below
freezing, subgrade moduli, and structural number (or some other means of representing
pavement structure).

It should be noted that these early evaluations are based on only one round of measured
roughness and rutting for each of the 244 test sections. Similarly, these evaluations are
based on estimates of historical traffic and of initial PSI. Although there does not appear to
be any opportunity for improving the estimates of initial PSI, there is a possibility for
improving the historical traffic estimates through a technique called backcasting. As
monitored traffic data accumulates, studies should be conducted to check and improve the
historical traffic estimates. By calibrating the historical traffic estimates in this fashion based
on monitored traffic data, potential errors in some of these estimates may be identified and
adjusted. Also, as measured traffic data are added in time to the historical estimates, the
magnitude of errors in the overall ESAL estimates will be reduced.

Similarly, as laboratory resilient modulus testing is completed, the results can be used to
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replace the estimated subgrade stiffnesses currently included in these analyses. Initial
analyses indicate that the estimated subgrade moduli established with Sensor 7 (as described
in the 1986 Guide) appear to result in subgrade moduli estimates five times as high as the
results from laboratory testing.

If future design equations are to be based on the serviceability concept, additional studies of
slope variance (SV) are needed to quantify the difference between SV from the profilograph
used at the Road Test and SV from the profilometer. These studies will allow a more
accurate prediction of PSI as defined at the AASHO Road Test. By utilizing some of the
sections that are fairly new, observation of how these values truly change with time would
also be possible.

It is recommended, however, that future design equations be based on contemporary methods
for measuring subgrade moduli and roughness. Different design equations will be required
for backcalculated subgrade moduli and those moduli obtained from laboratory testing, unless
suitable relationships between them can be developed.

It has long been recognized that the great majority of serviceability loss is due to increasing
roughness and that rutting, cracking, and patching contribute little to the calculated
serviceability loss (other than contributing to roughness). Many in the highway community
believe that a better approach is to model roughness instead. Roughness would then become
a separate concern, along with permanent deformation, fatigue cracking and thermal cracking
for consideration by designers and pavement managers as noted in Figure 4.9, which was
adapted from Figure 1 of Professor Carl Monismith’s 1992 distinguished lecture (11).

Figure 4.9 simply adds roughness (shown in dashed lines) to Monismith’s diagram.
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Improvements to the Flexible Pavement Design Equation

A number of different mechanisms affect the performance of a flexible pavement. These
mechanisms, operating both individually and interactively, eventually lead to one or more
types of pavement distresses (observed as distress manifestations such as cracks or ruts).
Researchers at the AASHO Road Test elected to lump multiple distresses into one composite
index—the Present Serviceability Index—which really emphasizes ride quality and virtually
ignores the individual distresses that frequently dictate maintenance or rehabilitation
strategies. Most members of the highway community agree that such pooling of distress
types into one composite index is no longer necessary or desirable. By predicting the
individual distresses and roughness separately, as shown in Figure 4.9, a flexible pavement
design process can be optimized to meet a given agency’s specific needs. For example, if
for a given facility rutting is predicted to be the predominant distress of concern, a pavement
design can be developed to minimize the occurrence of this particular distress. However,
this design should be checked to be sure that unacceptable levels of roughness change,
fatigue cracking, or transverse cracking would not be expected.

Another approach would be to generate separate designs for each of the individual distresses.
From this grouping of pavement designs, an optimum could be selected based on one of the
mathematical procedures currently available for this type of operation (e.g., linear
programming, dynamic programming, or possibly even simple weighted averages). Still
another approach to utilizing this set of distress prediction models would simply be to
program an iterative process by which a pavement design would be sought to ensure that
each of the distresses fell below a given level specified by the designer. Again, as an
example, the designer would specify the applicable materials and traffic constraints, along
with maximum distress levels tolerable for the traffic specified, and the program would be
able to respond with the thicknesses required.
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The thrust here is not toward the details of precisely how this optimum design would be
reached, but rather to emphasize the flexibility provided to the designer through the use of
unique predictive models for each individual distress. In this chapter, we will highlight the
predictive models that have been developed from these early analyses of the SHRP data and
how they might ultimately be refined and utilized in the pavement design process.

Results From Statistical Evaluations of Data

These results will compose an entire volume in the data analysis report, but only the most
important results are included here. At this early stage of the long-term studies, the
distresses experienced by the pavements in the studies are very limited. Only three distresses
existed in the General Pavement Studies (GPS) test sections in sufficient quantity for
reasonable evaluation. These distresses were change in roughness, rutting (or permanent
deformation), and transverse cracking. Only 18 test sections displayed fatigue cracking at
any severity level, so predictive equations for this distress must await future analyses when
more test sections have experienced fatigue cracking. The mean value of rut depth was only
0.28 in. (0.71 cm) and the mean of International Roughness Index (IRI) was 97 in./mi (1.54
m/km). The estimated mean change in IRI was 44 in./mi (0.70 m/km).

Predictive Equations From the Sensitivity Analyses

Based on all data available at the time of these analyses, studies were conducted to evaluate
the impact of the numerous pavement properties on the prediction of the distresses observed.
The sensitivity analyses were conducted on several data sets gleaned from the GPS-1 and
GPS-2 data. One data set included “HMAC [Hot Mix Asphalt Pavement] on granular base.”
Test sections in this data set could have an HMAC base, as well as an HMAC surface, as
long as the combination rested on a granular (unbound) base, subbase, or both. A second
data set included test sections with HMAC layers resting directly on untreated or treated
subgrade. A third data set included test sections with HMAC resting on a bound base other
than HMAC. The bound bases were either asphalt- or cement-treated.

The sensitivity analyses required equations to predict the occurrence of distress, and these
equations had to be statistically linear (however, transformed variables such as logarithms or
inverses, as well as variable combinations could be used) and have minimum collinearity
between the independent variables. These requirements precluded use of nonlinear
regression techniques and independent variable combinations with strong correlations.

The initial predictive models had an inference space that included the entire United States and
parts of Canada. It was found that a single model to predict a distress across such a broad
range of environmental conditions could not be developed that would sufficiently explain the
effects from variations of the independent variables. This could possibly be a result of
insufficient environmental data to explain the regional distinctions, but it is more likely a
reflection of the different ways in which distress mechanisms manifest themselves in different
environmental regions, as well as differences in interactions of distresses. Although the
research staff continued to produce these North American models, models were also
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developed separately for the four environmental regions (wet-no freeze, dry-no freeze, wet-
freeze, and dry-freeze). The approximate boundaries for these environmental regions appear
in Figure 5.1. These regional models were much better and are considered statistically
sufficient for limited use until additional data become available for future analyses. Their
interim use could include (1) acting as checks for individual distresses of pavement designs
produced by existing procedures and (2) predicting pavement management systems for which
more reliable predictive equations are not available.

The equations developed for HMAC over granular base appear in Tables 5.1 through 5.3 as
examples. Separate equations were produced for combinations of pavement type, distress
type, and environmental region. Because there are three distress types (rutting, transverse
cracking, and change in roughness), four environmental regions, and three types of
pavements; the potential for 36 regional equations exists. While this may seem an
overwhelming number of equations, project location quickly restricts the search to a
particular environmental region, and selection of type of pavement (HMAC over granular
base, HMAC over PC [portland cement] treated base, or full-depth) immediately leads to one
equation each for rutting, transverse cracking, and change in roughness. The North
American equations developed from full data sets are not recommended for general use.

The array of independent variables differs between equations because the relative significance
of individual data elements to prediction of distresses vary from one environmental region to
another. This variation reflects differences in environmental effects, mechanisms leading to
distress occurrence, and design and construction practices, and probably other differences or
biases as well. Each predictive equation selected was the best of several hundred trial
equations in terms of statistical parameters and minimization of collinearities between
independent variables.

One glaring omission is the lack of equations to predict fatigue cracking. Although this
important distress should be considered, there were not enough test sections with alligator
cracking to support statistical analyses (as discussed above).

Specific details on how these analyses were conducted, how the model forms were

developed, additional predictive equations, and additional details on the sensitivity analysis
results appear in SHRP-P-393, “Sensitivity Analyses for Selected Pavement Distresses.”
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Table 5.1.  Coefficients for Regression Equations Developed to Predict Rutting in

HMAC Pavements on Granular Base

Rut Depth = NB 10° Where: N = Number of Cumulative KESALSs
(Inches) B=b,+bx,+b,x, +... +b,Xx,
C=cp+c;xy+ex+ ... +c,X,

a. Entire Data Set

Explanatory Variable or Interaction Coefficients for Terms in
(x)) Units
b; G

Constant Term - 0.151 -0.00475
Log (HMAC Aggregate < No. 4 Sieve) % by Weight 0 -0.596
Log (Air Voids in HMAC) % by Volume -0.0726 0
Log (Base Thickness) Inches 0 0.190
Subgrade < No. 200 Sieve % by Weight 0 0.00582
Freeze Index Degree-Days 8.49 x 10% 0
(Log (HMAC Thickness) * Inches

Log (Base Thickness)) Inches 0 -0.161

n =152 R? = 0.45

b. Wet-No Freeze Data Set

Adjusted R? = 0.41

RMSE in Log,, Rut Depth = 0.18

Explanatory Variable or Interaction Coefficients for Terms in
(%) Units
b, G
Constant Term - 0.0739 0.00998
Log (HMAC Aggregate < No. 4 Sieve) % by Weight 0 -0.373
Log (Air Voids in HMAC) % by Volume 0 -0.215
Subgrade < No. 200 Sieve % by Weight -0.00056 0
Annual Number of Days > 90°F Number 0 -0.00022
(32.2°C)
Log (Annual Freeze-Thaw Cycles +1) Number 0 0.0337
Log (HMAC Thickness) * Inches
Log (Base Thickness) Inches 0 -0.135

R? = 0.72

Adjusted R? = 0.66

RMSE in Log;, Rut Depth = 0.18




Table 5.1. Coefficients for Regression Equations Developed to Predict Rutting in
HMAC Pavements on Granular Base (continued)

Rut Depth = NB 10°¢
(Inches)

Where:

c. Wet-Freeze Data Set

N = Number of Cumulative KESALs
B=by,+b x,+b,x,+...+b,x,
C=cptce;xte,x+..+¢

X

n n

Explanatory Variable or Interaction

(x)

Coefficients for Terms in

Constant Term

Log (Air Voids in HMAC)

Log (HMAC Thickness)

Log (HMAC Aggregate No. 4 Sieve)
Asphalt Viscosity at 140°F (60°C)
Log (Base Thickness)

(Annual Precipitation *
Freeze Index)

Units b Ca
- 0.183 0.0289

% by Volume 0 -0.189
Inches 0 -0.181

% by Weight 0 -0.592
Poise 0 1.80 x 10°
Inches 0 -0.0436
Inches

Degree-Days 0 3.23 x 10°®

n =41 R? = 0.73

d. Dry-No Freeze Data Set

Adjusted R? = 0.68

RMSE in Log,, Rut Depth = 0.19

Explanatory Variable or Interaction

Coefficients for Terms in

(x) Units b, Ci

Constant Term - 0.156 -0.00163
Log (HMAC Aggregate < No. 4 Sieve) % by Weight 0 -0.628
Log (HMAC Thickness) Inches 0 0.0918
Log (Air Voids in HMAC) % by Volume -0.0988 0
Base Thickness Inches 0 0.00257
Subgrade < No. 200 Sieve) % by Weight 0 0.00153
(Annual Precipitation * Inches
Annual Number of Days > 90°F Number 0 6.588 x 10°
[32.2°C))

n = 36 R? = 0.75 Adjusted R? = 0.70 RMSE in Log,, Rut Depth = 0.16
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Table 5.1. Coefficients for Regression Equations Developed to Predict Rutting in HMAC
Pavements on Granular Base (continued)

Rut Depth = NEB 10°€ Where:
(Inches)

e. Dry-Freeze Data Set

N = Number of Cumulative KESALSs
B=b,+bx +byx, +...+b,x,
C=cy+e;x;+c%x, + ... +¢,X%,

Explanatory Variable or Interaction

(x)

Coefficients for Terms in

Constant Term
Log (HMAC Thickness)
Mod. AASHTO Base Compaction

(Base Thickness *
Log (HMAC Thickness))

(Log (Subgrade < #200 Sieve) *
Log (Freeze Index +1))

(Log (Subgrade < #200 Sieve) *

Log (Air Voids in HMAC))

Units
b; G
- 0.0394 0.00451
Inches 0 0.0600
% of Max. -0.00849
. 0
Density
Inches
Inches 0 0.00875
% by Weight
Degree-Days 0 0.0107
% by Weight
% by Volume 0 -0.00567

n =34 R* =0.85 Adjusted R? = 0.81

RMSE in Log,, (Rut Depth) = 0.11
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Table 5.2. Coefficients for Regression Equations Developed to Predict Change in
Roughness in HMAC Pavements on Granular Base

AIRI = NB 10¢ Where: N = Number of Cumulative KESALSs
(Inches/Mile) B=b,+b,x, +byx, +... +b,Xx,
C=cytcxy+cx+ ... +¢,X%,

a. Entire Data Set

Explanatory Variable or Interaction Coefficients for Terms in
(x) Units
b, G
Constant Term - 0.153 -0.000543
Asphalt Content % by Weight 0 -0.0160
Annual Precipitation Inches 0 0.000359
Asphalt Viscosity at 140°F (60°C) Poise 0 3.634 x 10°
Base Thickness Inches 0 -0.00335
Base Compaction (Mod. AASHTO) % of Max. 0 0.0113
Density
Subgrade < #200 Sieve % by Weight 0 0.00062
Freeze Index Degree-Days 0 8.107 x 10°
(Ann. No. Days > 90°F (32.2°C) * Number 0 -0.000437
HMAC Thickness) Inches
(Ann. No. Days > 90°F (32.2°C) * Number 0 0.000178
Air Voids in HMAC) % by Volume

n = 108 R? = 0.65 Adjusted R*> =
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Table 5.2. Coefficients for Regression Equations Developed to Predict Change in
Roughness in HMAC Pavements on Granular Base (continued)

AIRI = N® 10
(Inches/Mile)

Where: N = Number of Cumulative KESALs
B=b,+bx;+bx, +...+b,Xx,
C=ctex+e,x+ ... +¢,x,
b. Wet-No Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms in
(x) Units
b; i
Constant Term - 0.210 0.0233
Base Thickness Inches 0 -0.0372
Annual Number of Days > 90°F Number 0 0.00249
(32.2°0C)
Annual Precipitation Inches 0 0.0214
(HMAC Thickness * Inches -0.000761
Base Compaction (Mod AASHTO)) % of Max. 0
Density
(Log (Air Voids in HMAC) * % by Volume 0 0.0322
Daily Temperature Range °F
(Asphalt Viscosity at 140°F [60°C] * Poise 0 -0.000299
Log (Annual Freeze-Thaw Cycles +1)) Number
(Asphalt Viscosity at 140°F [60°C] * Poise 0 1.702 x 103
Daily Temperature Range) °F

n =32 R? = 0.85

c. Wet-Freeze Data Set

Adjusted R? = 0.81

RMSE in Logy, (AIRI) = 0.31

Explanatory Variable or Interaction Coefficients for Terms in
(x) Units
b; G
Constant Term - 0.250 0.0403
Asphalt Viscosity at 140°F (60°C) Poise 0 0.00014
Air Voids in HMAC % by Volume 0 0.0704
Log (HMAC Thickness) Inches 0 0.314
Base Thickness Inches 0 -0.00162
Annual Number of Days > 90°F Number 0 -0.00165
(32.2°C)
(Freeze Index * Degree-Days
Air Voids in HMAC) % by Volume 0 1.628 x 10°

n =35 R? = 0.87

Adjusted R? = 0.84

RMSE in Log,, (AIRI) = 0.27
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Table 5.2. Coefficients for Regression Equations Developed to Predict Change in
Roughness in HMAC Pavements on Granular Base (continued)

AIRI = NB 10¢€
(Inches/Mile)

Where: N = Number of Cumulative KESALSs
B=b, +b,x, +b,x, +... +b,Xx,

C=cytc;xy,+cx+ ... +c,X,

d. Dry-No Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms in
(x) Units
b; i
Constant Term - 0.406 -0.00994
HMAC Thickness Inches 0 0.0255
Asphalt Viscosity at 140°F (60°C) Poise 0 0.00024
Base Thickness Inches 0 -0.0329
Annual Precipitation Inches 0 0.0124
(Annual Number of Days > 90°F Number
(32.2°C) * HMAC Thickness) Inches 0 -0.00114
(Subgrade < #200 Sieve * - % by Weight
Annual Precipitation) Inches 0 0.000268
n =27 R? = 0.95 Adjusted R* = 0.93 RMSE in Log,, (AIRI) = 0.18
e. Dry-Freeze Data Set
Explanatory Variable or Interaction Coefficients for Terms in
(x) Units
b; G
Constant Term - 0.271 0.00393
Asphalt Viscosity at 140°F (60°C) Poise 0 0.000317
Base Thickness Inches 0 0.0240
Annual Number of Days > 90°F Number 0 -0.0125
(32.2°C)
(Log (Air Voids in HMAC) * % by Volume
HMAC Thickness) Inches 0 -0.00197
(Freeze Index * Degree-Days
Annual Number of Days > 90°F Number 0 1.451 x 10°
[32.2°C))
n =14 R? = 0.94 Adjusted R* = 0.92 RMSE in Log,, (AIRI) = 0.21
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Table 5.3. Coefficients for Regression Equations Developed to Predict Transverse Crack
Spacing in HMAC Pavements on Granular Base and Full-Depth HMAC

Pavements

Crack Spacing = N® 10°

a. Entire Data Set

Where: N = Age, Years
(Feet) B=b,+bx; +b,x, + ... +b,x,
C=cy+c x;+c,x, + ... +¢,X,

Explanatory Variable or Interaction
(x)) Units

Coefficients for Terms in

¢

Constant Term -
Log (HMAC Thickness) Inches

Air Voids in HMAC % by Volume

Log (Base Thickness +1) Inches
Base Compaction (Mod. AASHTO) % of Max.
Density
(Asphalt Viscosity at 140°F [60°C] * Poise
Log (Base Thickness +1)) Inches
(Log (Annual Precipitation) * Inches
Log (Base Thickness +1)) Inches

0

0.282
0.341
0.00686
-0.00310
0.00646

0.00013

0.301

n = 118 R? = 0.37 Adjusted R* = 0.33

b. Wet-No Freeze Data Set

RMSE in Log,, Crack Spacing= 0.53

Explanatory Variable or Interaction
(x) Units

Coefficients for Terms in

C

i

Constant Term -

Log (Freeze Index +1) °F - Days
Log (Annual Precipitation) Inches
(HMAC Thickness * Inches
Log (Asphalt Viscosity at 140°F [60°])) Poise
(Base Thickness * Inches

Asphalt Content) % by Weight

(Base Compaction * % of Max.
Daily Temperature Range) | Density

°F

0.0131
0.733
0.534

0.0109

-0.00587

0.000295

n=17 R? = 0.85 Adjusted R? = 0.75

RMSE in Log,, Crack Spacing= 0.52
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Table 5.3. Coefficients for Regression Equations Developed to Predict Transverse Crack
Spacing in HMAC Pavements on Granular Base and Full-Depth HMAC
Pavements (continued)

Crack Spacing = N® 10 Where: N = Age, Years
(Feet) B=b,+bx,+bx,+...+Db,x,
C=cy+texit+cex,+ ... +¢, X,
c. Wet Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms in
(x) Units b, Ci
Constant Term - -0.106 -0.0201
HMAC Aggregate < No. 4 % by Weight 0 -0.0131
HMAC Thickness Inches -0.00474 0
Log (Annual Precipitation) Inches 0 1.84
Annual No. of Days > 90°F (32.2°C) Number -0.0540 0
(Base Thickness * Inches
Log (Annual Precipitation)) Inches 0 -0.0159
(Base Thickness * Inches
Annual No. of Days > 90°F [32.2°C]) Number 0 0.00240
(Subgrade < No. 200 * % by Weight
Log (Annual Precipitation)) Inches 0 0.00408
n =44 R? = 0.86 Adjusted R? = 0.83 RMSE in Log,, Crack Spacing = 0.30

d. Dry-No Freeze Data Set

Explanatory Variable or Interaction Coefficients for Terms in
(x) Units
b, c
“
Constant Term . - 0.241 -0.00155
HMAC Thickness Inches 0 -0.0282
Log (Base Thickness +1) Inches -0.147 0
Log (Annual Precipitation) Inches 0 1.89
n =23 R? = 0.86 Adjusted R? = 0.83 RMSE in Log,, Crack Spacing = 0.35
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Table 5.3. Coefficients for Regression Equations Developed to Predict Transverse Crack
Spacing in HMAC Pavements on Granular Base and Full-Depth HMAC

Pavements (continued)

. Crack Spacing = N® 10 Where:

e. Dry Freeze Data Set

N = Age, Years
(Feet) B=by+bx,+byx, +...4+b,x,
C=cytec x+c,x + ... +¢,X,

Explanatory Variable or Interaction Coefficients for Terms in
(x) Units
b; c
Constant Term - -0.425 0.0468
Log (Annual Traffic) KESALs 0 0.854
Base Thickness Inches 0 -0.00853
Freeze Index °F - Days 0 0.00013
(HMAC Thickness * Inches
Base Thickness) Inches 0 0.00398
(HMAC Thickness * Inches
Asphalt Viscosity at 140°F [60°C]) Poise 0 1.64 x 103
(HMAC Thickness * Inches
Log (Subgrade < No. 200 +1)) % by Weight 0 -0.0350
(Asphalt Viscosity at 140°F {60°C] * Poise
Log (Subgrade < No. 200 +1)) % by Weight 0 0.000109
n =34 R? = 0.78 Adjusted R? = 0.72 RMSE in Log,, Crack Spacing = 0.44
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Studies to Adapt Predictive Equations for Use in Design

The predictive equations from the sensitivity analyses discussed above were generated with a
great number of data elements available in the LTPP Data Base. It must be recognized,
however, that designers frequently do not have all these data at their disposal. For example,
HMAC mix properties and base compaction can only be accurately established during
construction. However, it is anticipated that most agencies select a set of assumed or
specified values for these factors and simplify the equations accordingly. Those variables that
may require assumed or specified values during design are

HMAC air voids,

asphalt viscosity,

asphalt content,

HMAC aggregate passing a No. 4 sieve, and

base compaction (percentage of modified AASHTO maximum density).

Figures 5.2, 5.3, and 5.4 graphically display relative sensitivities of the regional prediction
equations for HMAC over granular base to each of the significant independent variables
incorporated in them. The most significant variable appears at the top of each plot, and the
relative significance of variables decreases with position below, as indicated by the width of
the bars that represent each variable. The procedure used for the sensitivity analyses involved
setting all explanatory variables in a predictive equation at their means, and then varying each
one independently from one standard deviation below the mean to one standard deviation
above the mean. The relative sensitivity of the distress prediction for that variable is the
change in the predicted distress across the range of two standard deviations, as compared to
the changes when other explanatory variables were varied in the same manner. The vertical
lines through the bars are located at the predicted mean values for each data set. The arrows
within the bars indicate whether an increase in that variable increases or decreases the
predicted value. As an example, increasing KESALs in Figure 5.2 increases rut depth.

Using the results of the sensitivity analyses, a designer can establish the relative significance
of a given variable to the prediction of a given distress mechanism. This determination
allows a designer to establish how inaccuracies in an assumed value of any given variable will
affect prediction of a given distress.

Table 5.4 is an example of the statistical data prepared to help designers who are utilizing
these equations, or researchers who wish to use the LTPP data base, understand and
appreciate the inference spaces from which the equations were developed. Included in this
table are the mean, minimum, maximum, standard deviation, and other significant properties
associated with each of the variables included in the rutting equations from the entire data set
for HMAC over a granular base. The use of these equations for data outside the ranges of
data elements including the inference space should be approached with caution and may not
provide satisfactory results. The majority of the test sections had coarse subgrades, so the
equations should be used more conservatively for projects with fine-grained subgrades.
Similar tables are available for all the predictive equations and appear in the “Data Processing
and Evaluation” section of this report.
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Table 5.4. Numbers of Values in the Data Set and Statistical Values of Interest for
Significant Variables in the Rutting Data Set for HMAC Pavements Over

Granular Base (All Regions)

S S ———— . . |

No. of | Mean | Standard Low Median High

Variable Units Values | Value | Deviation | Value Value Value Range
Rut Depth Inches 153 0.28 0.14 0.05 0.25 0.85 0.80
HMAC Surface Inches 153 5.56 2.88 1.2 5.2 13.6 12.4
Thickness
Asphalt Content % by 153 5.15 0.81 2.66 5.12 7.44 4.77
Surface weight
Air Void Surface % by 153 4.82 2.20 1.05 4.49 13.60 12.55

weight

HMAC Aggregate % by 153 54.9 9.4 27.4 55.0 75.0 47.6
Passing No. 4 Sieve weight
Asphalt Viscosity at Poise 152 16- 745.1 414 1707 5316 4901
140°F (60°C) 64.4
Base Thickness Inches 153 13.8 8.5 3.0 10.9 47.1 44.1
Base Compaction % 152 95.7 5.7 76.0 95.5 117.0 41.0
Plasticity Index of % 153 7.6 9.2 0 4 44 44
Subgrade
In Situ Moisture of % by 153 11.7 7.0 0 10.7 32 32
Subgrade weight
Subgrade Soil Pass- % by 153 36.3 26.9 0 30.6 97.2 97.2
ing No. 200 Sieve weight
Age of Pavement Years 153 9.3 5.8 1 8 25 24
Cumulative No. 153 19- 3714.4 5 740 21445 | 21440
KESALs 56.2
Annual Precipita- Inches 153 323 16.8 3.8 31.7 84.2 80.4
tion
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Table 5.4. Numbers of Values in the Data Set and Statistical Values of Interest for
Significant Variables in the Rutting Data Set for HMAC Pavements Over
Granular Base (All Regions)

No. of | Mean Standard Low Median High

Variable Units Values | Value | Deviation | Value Value Value | Range
No. of Days Max. No. 153 46.7 43.5 0 37 180 180
Temp > 90°F
(32.2°C)
No. of Days Min. No. 153 94.4 61.6 0 95 226 226
Temp < 32°F
0°C)
Number of Air No. 153 77.9 445 0 86 178 178
Freeze-Thaw
Cycles
Freeze-Thaw Index °E- 153 520.6 678.2 0 182 3012 3012
Days :
<32°F
0°C)
Avg. Max. Temp. °F 153 68.10 10.77 46.97 69.32 88.54 41.57
(Daily Max.

Temps. for June,
July and Aug.)

Avg. Min. Temp. °F 153 43.89 10.48 22.90 43.54 68.69 45.79
(Daily Min. Temps.
for Dec., Jan. and
Feb.)

Average Daily °F 153 24.18 4.15 15.33 23.56 34.51 19.18
Temp. Range

Avg. Max. Temp. °F 153 86.69 7.43 71.38 87.95 109.0 37.63
By Month 1

Avg. Min. Temp °F 153 26.17 13.45 -2.14 26.26 60.76 62.90
By Month

*
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By utilizing the information in these tables in a slightly different fashion for those variables
with minimal sensitivity, a designer could reasonably fix these variables. The selection of
input values would then be simplified without significantly jeopardizing the prediction
capabilities of an equation.

A predictive equation should ideally include HMAC thickness, base thickness, and KESALSs
if it is to be used for design. HMAC thickness includes all HMAC layers, while base
thickness includes unbound base and subbase. With this in mind, layer thicknesses were
forced into all equations. A review of the sensitivity analyses results, however, indicates that
the layer thicknesses have little or no significance in some equations. This finding probably
reflects the adequacy of the pavement structures for most pavement sections offered by the
State Highway Agencies (SHAs), such that layer thicknesses did not in fact explain much of
the variations in distress occurrence.

Of particular interest, however, are those instances where the impact of these thicknesses is
contrary to normal expectations. As an example, when predicting rutting in the dry-freeze
region, greater layer thicknesses (either HMAC or base) result in greater rut depth
predictions. It is not difficult to visualize how such a situation could occur. However, for
design purposes, such trends confuse the process.

Particularly problematic was the fact that separate consideration of HMAC and base
thicknesses created conflicting effects for some distress types in some regions. That is,
increasing the thickness of one did not necessarily result in a decreased required thickness for
the other. As a result, other equations were developed to utilize structural numbers to
control those effects; however, this strategy was not effective in improving the use of the
equations for selecting layer thicknesses. ’

For each of the rutting and roughness equations for HMAC over granular base, the equations
were inverted to predict asphalt concrete (AC) thickness and a factorial of solutions was
generated to evaluate the use of these equations for design purposes. Three levels of each
variable were selected to establish how these equations would predict AC thickness for the
various potential combinations of factors.

In several instances the factorial included values for some factors that were outside the
inference space of the model (but within practical limits for the variable). As expected, in
many of these instances unreasonable design thicknesses were generated. The use of
factorials in this fashion provided an opportunity to further evaluate the sensitivity of these
distress mechanisms to the various factors incorporated and reemphasized the importance of
the inference space on which the equations were developed. In one instance, for selecting an
AC thickness based on roughness data from the dry-freeze region, the equation was so
sensitive to the freeze index that only a narrow band of conditions provided reasonable AC
thickness results. Similarly, when evaluating the equations based on rutting, it was noted
that the average rut depth for all these sections was only 0.28 in. (0.71 cm). Attempts to
utilize the equations with a rut depth of 0.50 in. (1.27 cm) occasionally produced AC
thickness values that were impractical. This example should serve to emphasize that caution
is required when employing these (or any) equations for conditions outside the inference
space from which they were developed.
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Use of Distress Equations for Design

The distress types considered significant were alligator cracking, rutting, transverse (or
thermal) cracking, increases in roughness, and loss of surface friction. However, alligator
fatigue cracking could not be studied at this early stage because there were only 16
pavements displaying medium- or high-severity alligator cracking, and the data collected
were not considered adequate for modeling the loss of surface friction.

The distress equations presented in this chapter were developed specifically for predicting
the individual distresses rather than for use as design equations, although it was expected
that they could satisfy both needs. The original intent was to rearrange the models
developed for the sensitivity analyses (SHRP-P-393) as design equations, but separate
consideration of HMAC and unbound base thicknesses was a problem because the separate
effects for some distress types and environmental zones were not additive. That is,
increasing the thickness of one did not necessarily result in a decreased required thickness
for the other. Consequently, it was decided to try structural number, in lieu of HMAC and
unbound base thicknesses separately, to develop models that were better behaved.

The models were developed again in essentially the same equation form except with
structural number representing base and HMAC thicknesses. However, the results
discussed above were still reflected in the design models. These models for separate
environmental zones had adjusted R? values that varied from 0.69 to 0.88.

The following is a generic basis for transforming equations predicting distress into
equations to estimate layer thickness requirements; it is assumed that this knowledge may
prove useful in the future. The equations to predict distresses (see Tables 5.1, 5.2, and 5.3
for examples) are in the form:

D = NB10° 5.1
Where:
D = distress in appropriate units (e.g., inches of rutting or in./mi of roughness
increase),
N = number of cumulative KESALs,
B =b,+bx, +bx,+ ... b, x,, and
C =cytc;x+te,x,+ ... C, X,

By designating some new variables and taking common logarithms of each side of the
equation, Equation 5.1 can be transformed to estimate required layer thicknesses when
allowable levels of distress are established and other independent variables (such as asphalt
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viscosity, environmental variables, other layer thicknesses, etc.) are defined. The
transformed equation is

x, - &% D/g 0% (52)
T

Xr = thickness of the base or HMAC,
= C (as shown in Tables 5.1 through 5.3) - C; X, and
coefficient of the term c; x; that includes the layer thickness of interest Xi.

Q0
=
[

Figure 5.5 is a nomograph developed for one of the new equations to illustrate the
frustration encountered in attempting to use the distress equations for layer thickness
designs. Two examples are shown on Figure 5.5 that differ only in the number of ESALs
“N.” Both limit changes in IRI to 100 in./mi (16.1 m/km), assume air voids of 5 percent,
use AC-10 asphalt, have a freeze index of 500, and expect an average of 70 days each year
with temperatures greater than 90°F (32.2°C). The unexpected result, however, is that the
structural number required for 1,000,000 ESALs is 11, while that for 10,000,000 ESALs is
5.1. The immediate response to such a result is that something is wrong with the
nomograph or the equation. The nomograph is correct for the equation, so that leaves the
equation (with an adjusted R? of 0.88) in question, or could it be that the pavements are
trying to communicate something that we do not yet understand?

100,000 e

10,000 e

1000 ~

100 —i=
N

Figure 5.5. Design Nomograph to Limit Roughness in the Dry-Freeze Climate
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However, the research staff does know from the sensitivity analyses that increasing base
thickness for the dry-freeze data set strongly indicates increasing roughness. When the base
compaction provided for these pavements is assumed to be insufficient or to later
deteriorate due to environmental or other effects, it can be seen that increasing the depth of
the base could result in more differential rutting and thus roughness. Future studies will be
needed to gain an understanding of unexpected results, such as in this example.

Because the approach of rearranging the regression equations and establishing limiting
levels of distress was not working out, it was decided to simply use the equations directly
to predict distresses for several trial designs. To explore this approach, a factorial
experiment was initiated for HMAC over granular base pavements to study predicted
distresses over a range of pavement structures and ESALs (ages for transverse cracking),
with material properties fixed at reasonable values and climatic variables set at their
regional means. This approach required 144 solutions each for predictions of rut depths,

changes in IRI, and transverse crack spacing. The results from these calculations appear in
Tables 5.5 through 5.7.

If the goal is to restrict rut depths to 0.50 in. (1.27/cm) or less for an estimated 25 million
ESALs, a review of Table 5.5 indicates that this limiting rut depth would be exceeded only

for pavements with only 2 in. (5.08 cm) of HMAC in the wet-freeze climatic zone (see
shaded cells).

Similarly, if the goal is to limit the change in roughness to 100 in./mi (1.59 m/km) for an
estimated 25 million ESALSs, review of the shaded cells in Table 5.6 indicates the
following:

®* More than 8 in. (20.2 cm) of base would be required for the pavement with 2
in. of HMAC for the wet-no freeze zone. Any of the other pavement designs
for the wet-no freeze zone would be adequate to limit rutting.

* Any of the pavement designs would satisfy this limitation for the dry-no freeze
zone.

e All the pavement designs would be satisfactory for the wet-freeze zone, even
though the designs with 10 in. (25.4 cm) of HMAC and 8 in. (20.3 c¢cm) of base
slightly exceed the limitation.

®  Only the designs with 8 in. (20.3 cm) of base were satisfactory for the dry-
freeze zone (see the explanation above for the similar result illustrated by
Figure 5.5).
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. The closest crack spacing (most cracks) was generally predicted in all
climatic zones for the thicker base layers, except that the opposite was true
for the dry-freeze zone.

o Closer crack spacings were predicted for pavements with thick bases in the
wet-no freeze climate than in the other climatic zones.

. The crack spacings predicted for all pavement designs and climatic zones
appear to be acceptable except those in the wet-no freeze zone for pavements
with 2 to 6 in. (5.08 to 20.3 cm) of HMAC over 24 in. (60.96 ¢cm) of base.

It can be seen from the discussion above that it would not be difficult to select pavement
designs that would limit distresses to satisfactory levels, based on specific predictive
equations to estimate the levels of distress that may be expected for a trial pavement design
and specified traffic and climatic conditions. This approach is proposed for future design
procedures. Longitudinal and fatigue cracking should be included as predictive equations
become available.

Table 5.8 indicates the effects on predicted distresses by increasing HMAC or base
thicknesses. These tabulated general effects are consistent with those indicated graphically
in Figures 5.2, 5.3, and 5.4.

Improved Design Equations

One objective of Task 4 was to develop improved design equations for flexible pavements,
but the research staff is unable to claim success in this effort. Although the distress models
developed for the sensitivity analyses (SHRP-P-393 in this report) are believed to have
served that purpose, transforming them to estimate thicknesses of HMAC and base
materials was not successful.

While these models may prove reasonable over time, they are based for this early analysis
on limited time sequence data (generally an initial point and another in 1990 or 1991 for
the distresses) and should be used with care and only as design checks in concert with other
design procedures. While a good distribution of pavement ages undoubtedly helped

explain curvature in the relationship, which will be enhanced by future time sequence data,
the research staff does not wish to promote these models for general use at this time.
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Evaluation of the Rigid Pavement Design Equation

This chapter describes the evaluation of the original 1960 American Association of State
Highway Officials (AASHO) Road Test equation and the extended 1993 American
Association of State Highway and Transportation Officials (AASHTO) design equation (12)
based on data obtained from the LTPP Data Base for experiments GPS-3, GPS-4, and GPS-
5, which provided data for JPCP, JRCP, and CRCP, respectively.

The AASHTO design equations were evaluated by comparing the predicted 18 Kip (80 kN)
equivalent single axle loads (ESALSs) for each test section determined from the design
equation to the observed ESALs (estimated from traffic data) carried by the section. The
predicted ESALs are calculated from the concrete pavement equations from the original Road
Test and the latest extended form in the 1993 AASHTO Design Guide for Pavement
Structures.

Examination of the AASHTO Concrete Pavement Design Equation

The AASHTO design model for concrete pavement structures was originally derived from
data obtained during the two year AASHO Road Test. The original model has been extended
by theoretical analysis and engineering judgment several times over the past 30 years. The
original 1960 AASHTO design equation is a relationship between serviceability loss, axle
loads and types, and slab thickness:

45-p
G = plog W. - 1 = Io ! (6.1)
¢ = Bdog W, - logp) g(4_5_1.5)
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Where:

G, = the logarithm of the ratio of loss in serviceability at time t to the

potential loss taken to a point where serviceability equals 1.5.
B = a function of design and load variables that influence the shape of the
p-versus-W serviceability curve.

W, = cumulative 18 kip ESALs applied at end of time t. v
) a function of design and load variables that denotes the expected
number of axle load applications to a terminal serviceability index.
logp = 7.35 log (D+1) - 0.06

i

D = slab thickness, inches
45 = mean initial serviceability value of all sections
P = terminal serviceability.

This equation was extended to apply to a broader set of conditions, using a variety of
analytical and subjective methods to make it more useful in design. Table 6.1 shows a
summary of concrete pavement design factors included in the original and extended
performance prediction models used in the AASHTO Guide. There was no validation data to
support most of these extensions.

In the 1993 AASHTO Guide, the rigid pavement design model is given as:

APSI
8 45-15
log W18 = ZR S0 + 7.35 log (D""l) - 0.06 + :m

(D + 1)8.46

S.C,(D*™ - 1.132)

+ (422 - 0.32p) log 6.2)

21563 1 @°7 - 1842
(E/k)°%
Where:
APSI = loss of serviceability (p, - p);
D = thickness of PCC pavement, inches;
S’ = modulus of rupture of concrete, psi;
Cd = drainage coefficient;
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Ec = elastic modulus of concrete, psi;

k = modulus of subgrade reaction, psi/inch;

J = joint load transfer coefficient;

W, = cumulative 18-kip ESALs at end of time t;
P = initial serviceability; and

P = terminal serviceability.

Table 6.1. Factors Included in AASHTO Concrete Pavement Design Model

Model Design Factor

1960 Original
AASHO Road Test

Slab Thickness

Number and magnitude of single or
tandem axle loads

Initial serviceability index
Terminal serviceability index

N

o

1961 Extension Modulus of subgrade reaction
PCC Modulus of Elasticity
PCC Poisson's ratio

PCC modulus of rupture
AxIle load equivalency factor

1090 N O

1972 Extension 10. J factor recommended for CRCP and
unprotected comer design
11.  Joint design recommendations
12. Reinforcement design procedure

1981 Extension 13.  Safety factor to reduce design Mp

1986 Extension 14. Drainage adjustment factor
15. Loss of support adjustment factor
16. 7 factor for different load transfer systems
17. Design reliability factor
18. Resilient modulus for subgrade
19. Environmental serviceability loss

For this evaluation, the reliability factor is set to 50% (Zz = 0). In order to evaluate the
AASHTO models, it was necessary to ensure that the traffic, climatic, material and other
design input variables were determined by the same procedures specified in the AASHTO
Guide or used in the Road Test, which was accomplished to the extent possible.



Comparative Analysis of Predicted Versus Actual ESALs

The AASHTO design model was used differently for this analysis than it would typically be
used in designing. When designing, the engineer determines the design slab thickness based
on the traffic forecasted over the design life and on a specific loss in the Present Index
Serviceability (APSI). In this analysis, the thickness, APSI, and other variables for a specific
section were known and the predicted cumulative KESALs were calculated. The APSI is
calculated as the difference between the initial serviceability and the serviceability at the time
of distress and roughness measurements. An estimate of the traffic carried from the time the
pavement was opened to traffic to the time of survey is also known for each test section. If
the AASHTO design equation is to be considered adequate and accurate, its predictions of
the ESALSs needed to reach the PSI loss should approximate the cumulative ESALs estimated
by the State Highway Agencies.

Five sets of analyses were performed individually for the GPS-3, GPS-4, and GPS-5
experiments to examine the equation’s ability to predict the amount of traffic actually
sustained by each test section. Initially, analyses were conducted on all available data for
each experiment. Then the data sets for each pavement type (JPCP, JRCP, and CRCP) were
further separated by environmental regions. Analyses were then performed for each of the
four environmental regions for each of the pavement types.

The analyses were carried out based on the original AASHTO design equation and the 1993
extension of that equation. The analysis based on the AASHTO original equation was mainly
done to determine if the improvements to the prediction model were beneficial.

The predicted KESALs were plotted against the estimated KESALSs on scattergrams to
visually examine the scatter of the data. If the AASHTO model should predict the estimated
KESALs exactly, then all the data would fall on the line of equality shown in each figure.

The results are also presented using bar graphs showing the ratio of predicted to actual
KESALs. If the predicted to actual KESALSs ratio is less than 1, then the AASHTO equation
can be said to be conservative. If the ratio is greater than 1, the predicted KESAL capacity
of the pavement is greater than the actual KESALs carried to cause the specified loss in PSI,
and the equation would produce an inadequate design (at the 50% reliability level).

Comparison at 50 Percent Reliability

The plots of predicted versus actual KESALs based on the original AASHTO model
(Equation 6.1) are shown in Figure 6.1 for JPCP and JRCP sections. The plots for
individual climatic regions are shown in Figures 6.2 and 6.4. If the predictions were
unbiased for all regions, approximately 50 percent of the points would be on each side of
the line of equality. CRCP was not included in this evaluation of the original AASHTO
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Figure 6.1. Predicted KESALs versus Actual KESALs for JPCP and JRCP
Based on Original AASHTO Prediction Model

model because the Road Test did not include CRCP. It can be seen that the original

AASHTO model overpredicts KESALs for a majority of test sections (78% of JPCP and
82% of JRCP).

The distributions of the ratios of predicted to actual KESALs for JPCP and JRCP sections,
based on the original AASHTO equation are shown in Figures 6.3 and 6.5. The mean ratio
for all test sections is approximately 4. The original AASHTO equation was developed
based on data from a wet-freeze region (Illinois). The results from this analysis of data
from the wet-freeze region only show that the AASHTO model overpredicts KESALs for
92% of the JPCP sections and 74% of the JRCP sections. These results are not surprising
since the Road Test inference space included only two years of aging and one million axle
loadings (8 million total ESALs on heaviest loops).

The predicted versus actual KESALSs plots, based on the 1993 AASHTO model, are shown
in Figure 6.6 for JPCP, JRCP, and CRCP sections. The plots for individual climatic
regions are shown in Figures 6.7, 6.9, and 6.11. The 1993 model was a much better
predictor for these analysis data sets than the original AASHTO model, which suggests that
the addition of several design factors considerably improved the performance prediction
capability of the model. Compared to the original model, the 1993 AASHTO model (at
50% reliability) overpredicts KESALs for only 49% of the JPCP sections, 68% of the JRCP
sections and 47% of the CRCP sections. However, large amounts of scatter exist about the
lines of equality, indicating poor precision. The standard error of prediction approaches 0.6
(of log N) for several of these plots. This results in a factor of about plus or minus 4 for
predicted versus estimated ESALs. This scatter may be due to several causes, including
inadequacies in the model, errors in the inputs, and random performance variations (or pure
error). These data sets do not permit the determination of how much variation is due to
each of these sources. A considerable amount of variation is believed to be due to model

inadequacies, such as the inability of the model to show the effects of different climates on
performance.
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Figure 6.2. Predicted KESALs Versus Actual KESALs for JPCP Based on the
Original AASHTO Prediction Model
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Figure 6.3. Ratio of Predicted KESALs to Actual KESALs for JPCP Based
on the Original AASHTO Prediction Model
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Figure 6.4. Predicted KESALs versus Actual KESALs for JRCP Based on the
Original AASHTO Prediction Model
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Figure 6.5. Ratio of Predicted KESALs to Actual KESALs for JRCP Based
on the Original AASHTO Prediction Model
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Based on the 1993 AASHTO Prediction Model
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The distribution of the ratios of predicted to actual KESALs for JPCP, JRCP, and CRCP
test sections, based on the 1993 AASHTO equation, are shown in Figures 6.8, 6.10, and
6.12. The improved performance prediction of the 1993 AASHTO model, compared to the
original AASHTO equation, can be seen from these plots. However, there remains a
considerable scatter about the line of equality. This scatter is believed to be due to three

causes: (1) deficiencies in the model, (2) errors in inputs, and (3) random performance
variation (noise).

In order to analytically determine the ability of the AASHTO concrete pavement design
model to predict the actual KESALs observed for the pavement sections, a statistical
procedure is followed which determines whether two sample data sets (actual and predicted)
are from the same population. The paired-difference method, based on the student
t-distribution, was used to determine if the KESALs as predicted by the AASHTO equation
were statistically from the same population as the estimated KESALSs.

The Microsoft” EXCEL"” statistical analysis tools (13) were used to compare the observed
KESALs to those predicted by the AASHTO equations. The calculated t-statistic (t-calc) is
compared with a tabulated t-statistic (t-table) for a specific confidence level. If t-calc >
t-table, then the null hypothesis (that they are from the same population) is rejected with a
5 percent chance of error, since the confidence level selected for this analysis is 95 percent.

A summary of the statistical analysis is presented in Tables 6.2 and 6.3. It is observed that
t-calc is greater than t-table for one-half the data sets when the original AASHTO model is
used, which indicates that the original AASHTO model does not reliably predict the ESALs
actually sustained by the pavement sections. However, for the 1993 AASHTO model, the

results show that the design estimates are statistically similar to the observed values. This

finding holds true for all climatic regions. These results show that the improvements to the
original AASHTO model were beneficial in increasing the accuracy of the design equation.

Use of a 4.5 PSI Value as the Initial Serviceability

For all the pavement sections in the original AASHTO equation, the mean initial PSI was set
at 4.5. In this analysis, however, the mean estimated initial PSI from all the data was set at
4.25. This 0.25 PSI loss reduction causes a reduction in predicted KESALs by the model.
Therefore, an analysis using an initial PSI of 4.5 (the same as the original AASHO Road
Test) was carried out. The statistical results from this analysis are shown in Table 6.4. The
results from this analysis show that the model for JPCP, JRCP, or CRCP generally
overpredicts numbers of axle loads. Because the initial PSI of the LTPP sections were not
measured after construction, it is impossible to know the exact loss of PSI with time or
traffic.
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Figure 6.7. Predicted KESALSs Versus Actual KESALs for JPCP Based
on the 1993 AASHTO Prediction Model
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Figure 6.8. Ratio of Predicted KESALSs to Actual KESALs for JPCP Based
on the 1993 AASHTO Prediction Model
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Figure 6.9. Predicted KESALS Versus Actual KESALSs for JRCP
Based on the 1993 AASHTO Prediction Model
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Figure 6.11. Predicted KESALSs Versus Actual KESALs for CRCP
Based on the 1993 AASHTO Prediction Model
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Based on the 1993 AASHTO Prediction Model
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Comparison at 95 Percent Reliability Level

Thus far, all comparisons of predicted versus actual KESALs discussed above have been
based on the mean 50th percentile model prediction. Another comparison was made of
actual KESALSs to predicted KESALs at a particular level of design reliability. Thus, the
mean logW,,, prediction is reduced by ZgS, (where Z; = 1.64 for 95% reliability, and S, =
0.35). The predicted KESALSs (at 95% reliability) versus actual KESALs are shown in
Figure 6.13. Here, most of the points are below the line of equality, which indicates that the
consideration of design reliability definitely results in a large proportion of sections (77 %)
having a conservative design, which is desired. However, 77% is considerably less than
95% design reliability.

Table 6.2. Results of t-Test for the Analysis Data Set Based on the Original AASHTO

Equation
Number of Adequately Predict
Type |Region| Observations | t-calc | t-table | t-calc>t-table Performance?
ALL 54 3.53 2.00 YES NO
WF 25 3.62 2.06 YES NO
JPCP WNF 17 1.27 2.12 NO YES
DF 6 1.20 2.57 NO YES
DNF 6 -1.11 2.57 NO YES
ALL 34 3.55 2.03 YES NO
WF 19 2.53 2.10 YES NO
JRCP | WNF 11 2.12 2.23 NO YES
DF | 4 391 3.18 YES NO
DNF - - - - -

Table 6.3. Results of t-Test for the Analysis Data Set Based on the 1993 AASHTO
Equation for Initial PSI = 4.25

Pavement Number of Adequately Predict
Type |Region| Observations | t-calc | t-table | t-calc>t-table Performance?
ALL 54 0.89 2.00 NO YES
WF 25 0.76 2.06 NO YES
JPCP WNF 17 0.78 2.12 NO YES
DF 6 0.56 2.57 NO YES
DNF 6 -1.96 2.57 NO YES
ALL 34 1.99 2.03 NO YES
WF 19 0.64 2.10 NO YES
JRCP | WNF 11 1.90 2.23 NO YES
DF 4 2.05 3.18 NO YES
DNF - - - - -
ALL 32 1.86 2.04 NO YES
WF | 8 -1.95 2.36 NO YES
CRCP | WNF 10 0.72 2.26 NO YES
DF 3 2.00 4.30 NO YES
DNF 11 1.87 223 NO YES
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Figure 6.13. Predicted KESALs Versus Actual KESALs for JPCP, JRCP, and CRCP
Based on the 1993 AASHTO Prediction Model With 95% Design Reliability

Summary

The original AASHTO rigid pavement model was based on empirical field data from the
Road Test, collected over a two-year period, and basically reflects the effects of axle load,
axle type, number of load applications, and slab thickness on serviceability loss. Therefore,
its inference space is specifically that of the Road Test site. To use the original model for
different conditions, adjustments are required to account for each significant difference
introduced. As a result, over the years adjustments have been made to the original model
to account for differences such as mixed traffic, pavement age greater than two years,
climate (moisture, temperature, freeze-thaw), joint load transfer, concrete strength, base and
subbase, subgrade, drainage, shoulders, joint spacing, widened lanes, and reinforcement.
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Table 6.4. Results of t-Test for the Analysis Data Set With Initial PSI = 4.5
Based on the 1993 AASHTO Equation

Pavement Number of Adequately Predict
Type |Region| Observations | t-calc | t-table | t-calc>t-table Performance?
ALL 54 2.14 2.00 YES NO
WE 25 1.72 2.06 NO YES
JPCP WNF 17 1.41 212 NO YES
DF 6 1.32 257 NO YES
DNF 6 1.15 257 NO YES
ALL 34 312 2.03 YES NO
WF 19 1.65 210 NO YES
JRCP WNF 11 2.68 223 YES NO
DF 4 251 3.18 NO YES
DNF - - - - -
ALL 32 2.51 2.04 YES NO
WF 8 -0.29 2.36 NO YES
CRCP | WNF 10 1.26 2.26 NO YES
DF 3 0.91 4.30 NO YES
DNF 11 224 223 YES NO

An evaluation was conducted to check the adequacy of the original AASHTO model and
the current 1993 AASHTO model. Of importance was the need to determine the adequacy
of the adjustment factors added to obtain the 1993 model and the need for any new
improvements to the model. The results of the evaluation show that, for the LTPP data
used, the original AASHTO model overpredicts ESALs for JPCP and JRCP sections. This
finding is not surprising in view of the limited inference space of the data used to develop
the original model, as indicated previously.

The results of the evaluation of the 1993 model indicate that, in general, the model is an
unbiased predictor of KESALs. A statistical analysis of the results obtained show there is
no significant difference between the predicted and actual KESALs for the JPCP, JRCP,
and CRCP sections evaluated. However, a closer examination of the results shows a large
scatter of the data about the line of equality that points to deficiencies in the model and/or
the inputs used. For example, when the value of the estimated initial PSI used was changed
from 4.25 to 4.5 in a sensitivity analysis, the results of a statistical analysis of the same
sections show that the 1993 AASHTO model overpredicts KESALs in some instances
(compare Table 6.3 to Table 6.4). Thus, even though collectively the adjustments to the
1993 model seem to have improved prediction capabilities in comparison to the original
AASHTO model, the evaluation points to the obvious need for further improvements.
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Improvements to the Rigid Pavement Design Equation

An evaluation of the 1993 AASHTO rigid pavement design equation in this study shows that,
although the current model appears to be an unbiased predictor of cumulative ESALs, further
refinements are needed to improve the precision of the model’s predictions. This chapter
describes several recommended improvements to the AASHTO rigid pavement design
equation. It also describes a more fundamental approach to improve the rigid pavement
design based on results from the LTPP analysis.

Design Improvements Based on LTPP Data

This section describes a more fundamental way to improve rigid pavement design that utilizes
the results obtained from current and future LTPP data analyses. The general approach is
shown in Figure 7.1. Key distress and roughness indicators that trigger rehabilitation needs
and user comfort and safety are used as the measures of performance rather than only the
Present Serviceability Index (PSI) used in the current AASHTO design method. The design
procedure can be formulated in a variety of ways, however, for simplicity’s sake it is
assumed that a given design has been proposed for a given project based on agency design
standards and thickness design procedure.

For any proposed pavement structure, the key distress and roughness indicators are predicted
based on the best available LTPP models of the design traffic and life. The adequacy of the
design is judged by the predicted performance of joints, the slab, and roughness. Design
modifications can be made if any aspect of performance is found to be deficient. This
sequence can then be repeated until an acceptable design is obtained.

The approach that directly considers key distress types and roughness is believed to be an
improvement over the existing AASHTO procedure, which only considers the PSI as the
performance indicator. Direct consideration of key distress types provides the opportunity to
examine various components of the pavement design (joint load transfer, joint spacing,
subgrade support, slab thickness, and edge support) for adequacy. In addition, the LTPP
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models more directly consider climatic variables such as precipitation, freeze-thaw cycles,
temperature range, and freezing index, and their effects on pavement performance.

An example of this approach is given at the end of this chapter, based on the preliminary
prediction models developed. This design approach/procedure can be continuously improved

as more reliable prediction equations become available from LTPP data analyses in the
future.

Predictive Equations From the Sensitivity Analyses

The development of several predictive models was documented in SHRP-P-393 for JPCP,
JRCP and CRCP. It is emphasized that these models are preliminary in nature, based on
inadequate data, and should not be utilized for pavement design at this stage. They are
presented here only to demonstrate their potential use in an improved design approach. It is
important that this point be kept in mind when observing the models included in this section.

The following models were developed for each key distress type and each type and design of
pavement:

Joint faulting: JPCP non-doweled joint model
JPCP/JRCP doweled joint model

Transverse JPCP model (all severities)

cracking: JRCP model (medium/high severities)

Joint spalling: JPCP model (all severities)

JRCP model (all severities)

International Roughness Index (IRI) roughness:
JPCP doweled joint model
JPCP non-doweled joint model
JRCP model
CRCP model

One important model that is missing is localized failures for CRCP (i.e., punchouts). There
were only a few sections with punchouts, and no model could be developed using the current
LTPP data. Such a model may be developed in the future when further deterioration and
time series data are available. Note also that only the existing IRI could be predicted since
the initial IRI of the sections was not measured. All these models were developed based on
available LTPP data from the entire North American database. Unfortunately, there were
insufficient data to develop regional models (i.e., pavements located in wet-freeze areas).
However, in the future much additional data will become available, permitting regional
models to be developed that will likely be considerably improved over those based on the
entire North American database.

95



CESAL

AGE

PRECIP

FI

DRAIN

T T 1 I 1

0.0 0.02 0.04 0.06 0.08 0.10

Faulting, in.
Figure 7.2. Sensitivity Analysis for Non-doweled Joint Faulting Model

A sensitivity analysis was conducted for each model similar to that described in Chapter 4 of
this volume and in more detail in SHRP-P-393. A figure was prepared for each equation
that shows the sensitivity of each variable in the model. The relative sensitivity of the
distress or IRI prediction for a variable is the change in the prediction while the variable of
interest is varied from one standard deviation below its mean to one standard deviation above
its mean. All other variables were held at their mean value. The wider the bar the greater
the relative sensitivity of the variable. In addition, the arrow shown in each bar represents
the direction of the prediction of distress or IRI when the variable itself is increased in
magnitude.

Joint Faulting — JPCP Non-doweled Equation

The following predictive equation was developed for transverse joint faulting, based on only
data for non-doweled JPCP sections from GPS-3.

2
FAULTND = CESAL®® «| - 0.0757 + 0.0251 */AGE + 0.0013 *(—PQR%:E)
+ 0.0012*(5255@‘15) - 0.0378 *DRAIN] (7.1)
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Where:

FAULTND = predicted mean transverse non-doweled joint faulting,
inches;

CESAL = cumulative 18,000 Ibs (80 kN) ESALs in traffic lane,
millions;

PRECIP = mean annual precipitation, inches;

FI = mean freezing index, °F days < freezing;

AGE = age since construction, years; and

DRAIN = 1 if longitudinal subdrainage exists; O if otherwise.

Statistics: N 25 sections
R? 0.550
MSE = mean square error = 0.047 in. (1.2 mm)

A detailed description of development of the predictive equation and its sensitivity to
individual independent variables is provided in SHRP-P-393. Results from the sensitivity
analysis of the model are shown in Figure 7.2. All variables significantly affect joint
faulting. The form of the model matches the physical development of faulting with traffic
loadings. Faulting is known to increase rapidly at first and then level off with continued
traffic loadings (14,15). In addition, this form matches boundary conditions of zero faulting
at zero loadings.

As CESAL increases, faulting increases rapidly at first and then levels off. Age was
included in the model due to its apparent strong individual effect. There was very little
correlation between AGE and CESAL. Here, AGE probably represents cycles of climatic
changes such as joint opening and closing, thermal curling cycles, cold-hot cycles, etc. Two
climatic variables were sufficiently strong enough to enter the model. Increased annual
precipitation is known to result in increased faulting. Pavements located in areas having a
higher freezing index (FI) fault more than those in warmer climates, which is consistent with
previous studies. Most of these sections did not include subdrainage and thus had high
potential for erosion and pumping, especially with no dowel bars to limit corner deflections.
The subdrainage variable is included in the model, although only five sections had
subdrainage in the form of longitudinal pipes. There were no permeable base sections in this
analysis.

The model includes several variables known from previous studies to affect faulting and the
directions of these variables are explainable. However, several potential variables are
missing. For example, base type (untreated versus treated) did not show much significance
even though other studies have shown it to be significant. Joint spacing did not show much
significance even though previous studies have shown it to be significant. The R? is only
0.55 and the residual standard error (MSE) is fairly high which indicates that there is
considerable room for improvement.
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Joint Faulting — JPCP/JRCP Doweled Model

The following equation was developed to predict transverse jbint faulting in JPCP and JRCP
with dowels, using data from GPS-3 and GPS-4:

2 2
FAULTD - CESAL°'25*[0.0238 . 0.0006*(@%“5@) . 0.0037*( 100 )

KSTATIC

2
. 0.0039*(%) - 0.0037 * EDGESUP - 0.0218 *DOWDIA]
(7.2)
Where:
FAULTD = predicted mean transverse doweled joint faulting, inches;
CESAL = cumulative 18,000 Ibs (80 kN) ESALs in traffic lane, millions;
JTSPACE = mean transverse joint spacing, ft;
KSTATIC = mean backcalculated static k-value, psi/inch;
AGE = age since construction, years;
EDGESUP = 1 if tied concrete shoulder; 0 if any other shoulder type; and
DOWDIA = diameter of dowels in transverse joints, inches.
Statistics: N = 59 sections
R? = 0.534
MSE = 0.028 in. (0.7 mm)

A detailed description of the development of this predictive equation is provided in
SHRP-P-393. The results of the sensitivity analysis for the equation are shown in Figure
7.3. CESAL, JTSPACE, AGE, and KSTATIC have the greatest effects on doweled joint
faulting. The form of the model matches the physical development of faulting with traffic
loadings (14,15). Faulting is known to increase rapidly at first and then level off with
continued traffic loadings. In addition, this form matches boundary conditions of zero
faulting at zero loadings.

As CESAL increases, faulting increases rapidly at first and then levels off. Faulting
increases considerably as joint spacing increases — a trend found in several previous
studies. Joint spacing ranged from 13.5 to 65 ft (4.1 to 19.8 m). As the static k-value
increases, faulting decreases. This variable shows the effect of subgrade stiffness on the
development of faulting. AGE was included in the model due to its apparent strong
individual effect. There was very little correlation between AGE and CESAL. Here, AGE
probably represents cycles of climatic changes: joint opening and closing, thermal curling
cycles, cold-hot cycles, etc. None of the climatic variables were strong enough to enter the
model by themselves. Edge support shows slight reduced faulting when a tied concrete
shoulder is present. Faulting decreases as dowel diameter increases, reflecting a reduction in
dowel/concrete bearing stress with larger dowel bars.
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Figure 7.3. Sensitivity Analysis for Doweled Joint Faulting Model

The model includes several variables known from previous studies to affect faulting, and the
effects (increase or decrease of faulting) are logical. However, several variables not found to
significantly affect faulting for this data set are generally considered significant. For
example, base type (untreated versus treated) and climate did not show much significance.
The R? is only 0.53 and the MSE is 0.028 in. (0.7 mm), which is fairly high, indicating that
there is considerable room for improvement.

Transverse Cracking — JPCP Model

A model for transverse cracking (all severities) of JPCP was developed using all data for the
GPS-3 sections. However, this database included only a few sections that had transverse
cracking. Efforts to develop predictive models based on the procedures used for all the other
models were unsuccessful for transverse cracking. Therefore, a mechanistic procedure was
used to calculate the accumulated fatigue damage over the life of each section, and attempts
were then made to correlate this damage with transverse cracking based on procedures
applied in previous studies (4,14). A detailed description of the model development is
provided in SHRP-P-393.
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Miner’s fatigue damage model was used to determine the accumulated fatigue damage (n/N)
over the life of each pavement section. The details of the procedure used to determine the
fatigue damage parameters n and N for the pavement sections are given in SHRP-P-393.

The numerator n is a function of the cumulative ESAL loadings and was calculated as the
expected number of applied edge stresses due to traffic ESAL loadings and thermal daytime
curling. The denominator N is the mean number of allowable edge stress loads required to
cause failure or slab cracking and is a function of the stress to strength ratio of the pavement
sections.

The mean 28 day flexural strengths of the concrete pavements were estimated from the split
tensile strength data from the LTPP data base. Finite element techniques (ILLISLAB) were
used to calculate the edge stress. The edge stress was calculated to account for the combined
effects of loading and positive temperature gradient curling. The stress prediction equations
are included in “Mechanistic Design Models of Loading and Curling in Concrete Pavement”
(16). Several variables are included in the edge stress calculation, including slab thickness,
modulus of elasticity, Poisson’s ratio, and length; thermal gradients through the slab;
subgrade k-values; single axle load at edge of slab; and the thermal coefficient of expansion
of concrete.

Temperature gradients were based on mean positive gradients during daylight hours. Values
used are as follows:

Mean Annual

Climatic Slab Thermal
Region Thickness, in. Gradient, °F/in.
Nonfreeze 8 1.40

9 1.30

10 1.21

11 1.11

12 1.01
Freeze 8 1.13

9 1.05

10 0.96

11 0.87

12 0.79

(1in. = 2.54 cm; °F/in. = 0.0458 °C/m)

The free edge stress was adjusted for load transfer from a tied concrete shoulder
(approximately 75 percent deflection transfer, which results in a 15 percent reduction in edge
stress).

Both n and N were computed for each section in the database and the fatigue damage ratio
determined as the total estimated fatigue damage from the time the section was opened to
traffic to the time when transverse cracking was measured. A plot of percentage of cracked
slabs versus log,,(n/N) was prepared to show the relationship between cumulative fatigue
damage and percentage of cracked slabs. Figure 7.4 shows these results. This plot shows
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no cracking for fatigue damages less than about 0.1 and then some cracking developing as
fatigue damage increases beyond 1.0. Although there are a limited number of cracked
sections, a general trend can be seen. Previous studies with far more data than were
available for this study have shown similar results (8,15).

Conceptually, an s-shaped curve should be fitted through these data to consider boundary

conditions. However, fitting such a curve by regression techniques was not successful due to
the scatter of data. Therefore, for illustrative purposes only, an s-shaped curve was fitted by
eye through the data and is shown in Figure 7.4. The equation for this curve is given below:

1

0.01 + 10%100 foo{ )

Where:
PCRACK = percentage of cracked slabs,
n = expected number of applied edge stresses based on traffic
ESAL loadings and thermal daytime curling,
N = mean number of allowable edge stress loads that causes

slab cracking, and

= f(slab thickness, modulus of elasticity, Poisson’s ratio,
slab length, thermal gradients, subgrade k-value, single
axle load at edge of slab, and thermal coefficient of
expansion of concrete).

A sensitivity analysis of this equation, with the equations for n and N included, is described
in SHRP-P-393, and the results are shown in Figure 7.5. Thickness (THICK) has by far the
strongest effect on cracking, followed by the concrete modulus of rupture at 28 days
(MR28). This model is based on too few data points and should only be considered
approximate. This type of model has been derived with far more data under several previous
studies (8,14). As more LTPP data become available, it will be possible to develop a much
more reliable model for slab cracking for JPCP. A more comprehensive fatigue damage
analysis should also be developed and applied. Such an analysis should consider axle load
spectra, increases in concrete strength over time, and variations in thermal gradient over
seasons and days.

Transverse Cracking — JRCP Model

The model below was developed for transverse cracking from data for JRCP test sections
from GPS-4. Only deteriorated transverse cracks were considered, because low-severity
transverse cracks are a normal design occurrence in JRCP where reinforcement is supposed
to hold them tight and prevent deterioration.

102



THICK
MR28
JTSPACE
CESAL
ECON
TEMPD
KSTATIC
WIDTH
EDGESUP -

NI \IZ NI/ NI/

]
VAN

0.0 0.2 0.4 0.6

Percent of Slabs Cracked

Figure 7.5. Sensitivity Analysis for Transverse Cracking of JPCP Model

CRACKIR = -7295 + 1.907 CESAL + 0.182(——1——)

PSTEEL?
+ 2474 [—L__| + 0.697 PRECIP (7.4)
KSTATIC
Where:
CRACKIJIR = number of transverse cracks (medium-high severity)/mile;
CESAL = cumulative 18,000 Ibs (80 kN) ESALs in traffic lane, millions;
PSTEEL = percentage of steel (longitudinal reinforcement);
PRECIP = annual precipitation, inches; and
KSTATIC = mean backcalculated k-value, psi/inch
Statistics: N = 27 sections
R? = 0.48
MSE = 20.8 cracks/mi (12.5 cracks/km)

A detailed description of the development of this predictive equation is provided in
SHRP-P-393. The results of the sensitivity analysis for the model are shown in Figure 7.6.
All variables significantly affect crack deterioration in JRCP. It can be seen that the modulus
of subgrade reaction k was predicted to have the greatest influence on the occurrence of
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deterioration of transverse cracks in JRCP. The next most significant variable was
percentage of steel, while the form of the equation shows deteriorated cracks developing at a
uniform rate with increased traffic loadings. The model shows that as steel percentage
increases, the number of deteriorated transverse cracks is reduced greatly. The exact amount
of reinforcement to prevent crack deterioration may depend on climatic factors. JRCPs in
areas with relatively high precipitation levels experience more crack deterioration than those
in drier climates.

All variables recommended by the experts and available in the data base were evaluated, but
only these were found to be significant. However, several variables which are generally
considered to significantly affect transverse crack deterioration did not surface as significant
for this data set. These include base type (untreated versus treated), slab thickness, joint
spacing, and other climatic variables (14). The R? is only 0.48 and the MSE is 21 cracks/mi
(13 cracks/km), which is fairly high, indicating that there is considerable room for
improvement in predictive ability.

KSTATIC

PSTEEL

PRECIP

0 10 20 30 40 50

Cracking, No./Mile

Figure 7.6. Sensitivity Analysis for Transverse Cracking of JRCP Model
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Joint Spalling — JPCP Model

The following equation was developed to predict transverse joint spalling (all severities),
based on a data set that included data from all JPCP sections in GPS-3:

SPALLJP = 9.79 + 10.01 %[~ 1.227 + 0.0022 *(0.985 x AGE+ 0.171 * FTCYCLE)] .5)

Where:
SPALLJP

predicted mean percentage of transverse joint spalling (all
severities), percentage of total joints;
FTICYCLE = mean annual air freeze-thaw cycles; and

AGE = Age since construction, years.
Statistics: N = 56 sections
R? = 0.335
MSE = 11.05 percent of joints

A detailed description of the model development is provided in SHRP-P-393. The results
from a sensitivity analysis for this equation are shown in Figure 7.7. Both FTCYCLE and
AGE have a significant effect on JPCP joint spalling. The form of the model generally
matches the physical development of spalling with age (14,15). Spalling generally increases
slowly at first and then increases more rapidly after several years due to a variety of design
and climatic conditions. Over time, incompressibles infiltrate into joints with inadequate
seals, causing increased compressive stresses in hot weather. The freeze-thaw cycle of
saturated concrete may weaken concrete near the joints over time. Dowel bar corrosion and
subsequent lockup may also contribute to joint spalling.

All variables recommended by the experts and available in the data base were evaluated but
few were found to have any significance. Only two variables were included in the final
model. As AGE increases, spalling increases slowly at first and then increases more rapidly.
Here, AGE probably represents cycles of climatic changes such as joint opening and closing,
thermal curling cycles, cold-hot cycles, etc. Only one climatic variable was strong enough to
enter the model. An increased annual number of air freeze-thaw cycles result in prediction
of increased joint spalling. This variable may indicate that freeze-thaw cycles cause a
weakening in the (often-saturated) concrete near the joint, which eventually spalls over time.

The model includes only two of several variables known from previous studies to affect
spalling, and their effects (increase spalling) are logical. Variables believed from other
studies to be significant to joint spalling but not found to be significant for this data set
include joint seal type and joint spacing. Joint spacing is inherent in the model because the
dependent variable is the percentage of joints spalled. However, its absence from the model
indicates that it apparently does not affect the percentage of joints spalled. Joint spacing only
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Figure 7.7. Sensitivity Analysis for Joint Spalling of JPCP Model

ranged from 13 to 30 ft (3.9 to 9 m) in this data set, so within this limited range it may not
have contributed significantly to joint spalling. The R? is only 0.34, and the MSE is 11
percent, which indicates that there is considerable room for improvement in the predictive
capability of this equation.

Joint Spalling — JRCP Model

The following model was developed for transverse joint spalling (all severities) from a data
set that included all JRCP test sections in GPS-4:

SPALLJR = - 79.01 + 0.603 *x(AGE)"® + 0.129 *(TRANGE)'* (7.6)
Where:
SPALLJR = predicted mean percentage of transverse joints spalled (all
severities), percentage of total joints;
TRANGE = mean monthly temperature range (mean maximum daily

temperature minus mean minimum daily temperature for each
month over each year); and
AGE = age since construction, years.
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Statistics: N = 25 sections
R? = 0.644
MSE = 16.6 percent of joints

A detailed description of the model development is provided in SHRP-P-393. The results
from a sensitivity analysis of the model are shown in Figure 7.8. Both AGE and TRANGE
have a significant effect on joint spalling in JRCP. The form of the model shows a
curvilinear increase in spalling with age and more severe temperature conditions (14,15).

AGE A

TRANGE A

Percent of Joints Spalled
Figure 7.8. Sensitivity Analysis for Joint Spalling of JRCP Model

All variables recommended by the experts and available in the data base were evaluated but
few were found to have any significance. Only two variables were included in the final
model. As AGE increases, spalling increases in a curvilinear manner, according to this
model. AGE here is believed to represent cycles of climatic changes such as joint opening
and closing, thermal curling cycles, cold-hot cycles, freeze-thaw cycles, progressive
corrosion of dowels, etc. The TRANGE variable reflects daily and monthly temperature
ranges to which the pavement is subjected. The higher the TRANGE (northern United States
and Canada), the greater the joint spalling. A greater temperature range would generally
cause increased joint openings, and increase the infiltration of incompressibles in winter and
high compressive stresses in summer. TRANGE also correlates strongly with other thermal
variables, including the number of freeze-thaw cycles, number of days above 90°F (32.2°C),
and the freezing index.
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The model includes only two of several variables known from other studies to affect spalling.
The effects from these two variables (increases in joint spalling) appear logical. There are,
however, several variables believed from other studies to be significant to joint spalling that
were not found to be significant for this data set. For example, joint seal type did not show
significant effect. Joint spacing is inherent in the model because the dependent variable is a
percentage of joints spalled. However, its apparent lack of significance indicates that it does
not affect the percentage of joints spalling. Pavements with longer joint spacing would
conceivably have the same percentage of joint failures as similar pavements with shorter joint
spacing. Pavements with closer joint spacing would be expected to have more spalled joints
per mile than pavements with longer joint spacing. The R? is only 0.64, and the MSE is 17
percent, which indicates that there is considerable room for improvement in this predictive
equation.

Roughness (IRI) — JPCP Doweled Joint Model

The equation below was developed for roughness (IRI) of doweled JPCP, based on the entire
data set for GPS-3. The current IRIs of the pavements were used for prediction, rather than
the increase in IRI, since the initial IRI after construction was not generally measured.

IRI = 1059 + 159+ [ —ASE__).5 17« JTSPACE -7.13 + THICK + 13.50 + EDGESUP
KSTATIC
(7.7)
Where:
IRI = International Roughness Index, inches/mile;
AGE = age since construction, years;
THICK = concrete slab thickness, inches;
KSTATIC = mean backcalculated static k-value, psi/inch;
EDGESUP = 1 if tied concrete shoulder, O for any other shoulder type; and
JTSPACE = mean transverse joint spacing, feet.
Statistics: N = 21 sections
: R? = 0.548
MSE = 19.06 in./mi (30.6 cm/km)

A detailed description of the model development is provided in SHRP-P-393. The results
from a sensitivity analysis for the model are shown in Figure 7.9. JTSPACE has the largest
effect on the occurrence of roughness, followed by THICK, EDGESUP, AGE, and
KSTATIC. The form of the model provides for a linear increase in IRI over time. Here,
AGE probably represents a combination of factors that include traffic loadings and the effect
of cycles of climatic changes on the pavement, such as joint opening and closing, thermal
curling cycles, cold-hot cycles, etc. AGE may also represent time-dependent settlements or
heaves of the foundation. No climatic variables were strong enough to be included in the
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Figure 7.9. Sensitivity Analysis for IRI Roughness for Doweled Joint Model

model. The stiffer the subgrade, as measured by the backcalculated KSTATIC, the lower the
IRI. As joint spacing decreases, the IRI increases. As slab thickness increases, IRI
decreases. The presence of a tied concrete shoulder appears to increase the IRI slightly.

-The model for doweled JPCP includes several variables known from previous studies to
affect roughness, and the effects of these variables (increase or decrease in roughness) appear
logical. However, several variables that were expected to have an effect were not significant
for this data set, including base type (untreated versus treated) and several climatic variables.
The R? is only 0.55, and the MSE is 19 in./mi (30.6 cm/km), which indicates that there is
considerable room for improvement in the predictive ability of this equation.

Roughness (IRI) — JPCP Non-doweled Model

The predictive equation below was developed for roughness (IRI) of non-doweled JPCP from
the GPS-3 data set. The current IRIs of the pavements were used for prediction, rather than
the increase in IRI, since the initial IRI after construction was not measured.
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IRI = 38.85 + 129 *CESAL + 0222 *FT + 1.50 x PRECIP

-10.97 *x BASE - 13.7 *x SUBGRADE

(7.8)
Where:

IRI = International Roughness Index, inches/mile;

CESAL = cumulative 18,000 lbs (80 kN) ESALs in traffic lane,
millions;

PRECIP = mean annual precipitation, inches;

FT = mean annual air freeze-thaw cycles;

BASE = 1 if treated granular material (with asphalt, cement) or
lean concrete; O if untreated granular material; and

SUBGRADE = 1 if AASHTO classification is A-1, A-2, A-3 (coarse-

grained); 0, if AASHTO classification is A-4, A-5, A-6,
A-7 (fine-grained).

Statistics: N = 28 sections
R? =  0.644
MSE = 31.29 in./mi (50 cm/km)

A detailed description of the model development is provided in SHRP-P-393. The results
from a sensitivity analysis of this equation are shown in Figure 7.10. CESAL has the largest
effect, followed closely by PRECIP. FTCYCLE, SUBGRADE, and BASE have significant
but lesser effects on the occurrence of roughness for non-doweled JPCP. The form of the
equation provides for a linear increase in IRI with increases in predicted CESALs. Two
climatic variables were strong enough to be included in the equation. IRI increases with
increases in the annual number of air freeze-thaw cycles and with increasing PRECIP, and
decreases for pavements having asphalt- or cement-treated bases. Subgrade soil classification
affects IRI in that coarse-grained soils result in a lower IRI over time than do fine-grained
soils.

The equation includes several variables known to affect roughness from previous studies, and
the sense of the effects of these variables are logical. However, several variables that were
expected to be significant were not found to be significant for this data set, including joint
spacing. The R? is only 0.644, and the MSE is 31 in./mi (50 cm/km), which indicates that
there is considerable room for improvement.

Roughness (IRI) — JRCP Model

The following equation was developed to predict roughness (IRI) of JRCP, based on data
from GPS-4. The current IRIs of the pavements were used rather than increases in IRI,
since the initial IRI after construction was not measured.
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IRI = 1414 + 0.8488 * AGE + 0.3469 * PRECIP + 1388 x

1 7.9
(———) + 21.24 * THICK + 15.09 * EDGESUP
KSTATIC
Where:
IR = International Roughness Index, inches/mile;
AGE = age since construction, years;
THICK = concrete slab thickness, inches;
KSTATIC = mean backcalculated static k-value, psi/inch;
PRECIP = mean annual precipitation, inches; and
EDGESUP = 1 if tied concrete shoulder; O if any other shoulder type.
Statistics: N = 32 sections
R? = 0.782
MSE = 9.86 in./mi (15.6 cm/km)
CESAL -

PRECIP

FT.CYCLE -

SUBGRADE A

BASE

90 100 110 120 130 140 150
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Figure 7.10. Sensitivity Analysis for IRI Roughness for Non-doweled JPCP Joint Model
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A detailed description of the development of this equation is provided in SHRP-P-393. The
results of a sensitivity analysis for this equation are shown in Figure 7.11. THICK,
KSTATIC, and EDGESUP were most significant, followed by AGE and PRECIP. The form
of the equation provides for a linear increase in IRI over time. Here, AGE probably
represents a combination of factors that include traffic loadings and the effect of cycles of
climatic changes: joint opening and closing, thermal curling cycles, cold-hot cycles, etc.
Only one climatic variable, PRECIP, was strong enough to be included in the model. As
PRECIP increases, IRI also increases. IRI is lower when the subgrade is coarse-grained soil
than when it is fine-grained soil. As slab thickness increases, IRI was found to increase for
this data set. While this may seem illogical, it may be that the thicker slabs in the GPS-4
data base were constructed rougher originally. The presence of a tied concrete shoulder
increases the IRI slightly, which may also be related to the initial construction or other
factors.

The equation for prediction of roughness in JRCP includes several variables known to affect
roughness from previous studies, and the effects (decrease or increase in roughness) are
logical. However, several variables that were expected to be significant were not found to be
significant for this data set, including base type (untreated versus treated) and several

climatic variables. The R? for this equation is 0.78, and the MSE is 10 in./mi (15.6
cm/km); however, data were available for only 32 test sections.

Roughness (IRI) — CRCP Model

The following equation was developed for predicting roughness (IRI) of doweled CRCP
based on data from GPS-5. As before, the current IRI of the pavements was used for
prediction rather than the increase in IRI:

IRT = 262.0 + 1.47 *CESAL - 2.94«THICK - 232.3 *xPSTEEL

(7.10)
- 29.79 x WIDENED - 16.82 xSUBGRADE
Where:
IRI = International Roughness Index, inches/mile;
CESAL = cumulative 18,000 lbs (80 kN) ESALs in traffic lane,
millions;
PSTEEL = percentage of steel (longitudinal reinforcement);
THICK = concrete slab thickness, inches;
WIDENED = 1 if widened traffic lane; O if normal-width lane; and

SUBGRADE = 1 if AASHTO classification is A-1, A-2, A-3 (coarse-
grained); O if AASHTO classification is A-4, A-5, A-6,
A-7 (fine-grained).
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Figure 7.11. Sensitivity Analysis for IRI Roughness for JRCP Model

Statistics: N = 42 sections
R? = 0.546
MSE = 17.19 in./mi (27 cm/km)

A detailed description of the model development is provided in SHRP-P-393. The results of
a sensitivity analysis for the predictive equation are shown in Figure 7.12. PSTEEL has by
far the largest effect on the IRI of CRCP. The form of the model provides for a linear
increase in IRI with traffic. No climatic variables were strong enough to be included in the
model. A coarse-grained subgrade soil type results in a lower IRI than a fine-grained soil
type. As slab thickness increases, the IRI decreases. As the percentage of steel increases,
the IRI decreases. The presence of a widened traffic lane reduces the IRI.

The IRI model for CRCP includes several variables known from previous studies to affect
roughness and the effects (increases or decreases in roughness) are logical. However,
several variables that were expected to be significant were not found to be so for this data
set, including base type (untreated versus treated) and several climatic variables. The R? is
only 0.55 and the MSE is 17 in./mi (27 cm/km), which indicates that there is considerable
room for improvement in this predictive equation. ‘
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CRCP Failure Model

Adequate data were not available to develop a predictive equation. Only five sections
exhibited localized failures such as punchouts. As time and traffic loadings increase and this
distress develops on more sections, it is expected that a predictive model can be developed.

Illustration of Use of LTPP Models in Pavement Design Evaluation

The following presentation is intended to illustrate the potential for use of the LTPP models
for evaluation or developing pavement designs. This example is for illustration only since
the early LTPP prediction models are not adequate for use in design at this time. Future
versions of these models should be greatly improved and should be adequate for use in
design. A JRCP design has been proposed, based on an agency’s standard design procedures
and design standards. The values selected for the required design inputs for the LTPP
models are summarized below:

PSTEEL -+

SUBGRADE -

WIDENED A

CESAL A

THICK A

70 80 90 100 110

IRI, in./mile

Figure 7.12. Sensitivity Analysis for IRI Roughness for CRCP Model
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Design life: 30 years
Traffic: 30 million ESALSs in design lane

Climate: PRECIP

30 in. (762 mm)

TRANGE = 60°F (33.3°C)
Subgrade: KSTATIC = 300 psi/in. (82.7 Kpa/mm)
Base: Treated granular material
Slab: THICK = 9 in. (229 mm)

PSTEEL = 0.12 percent area
Joints: JTSPACE = 40 ft (12 m)

DOWDIA = 1.25 in. (32 mm)
Shoulders: AC, EDGESUP = 0

These pavement design inputs and characteristics were used with all the predictive models for
JRCP to estimate performance over the 30 year design life and beyond. (Note that prediction
beyond about 20 years exceeds the inference space for the current LTPP models.) Joint
faulting, joint spalling, transverse crack deterioration, and IRI were predicted. Since some
readers may not be familiar with the values of the IRI, the corresponding Present
Serviceability Rating (PSR) has been estimated from a recently developed model from user
panel data (17). The results are shown in Table 7.1. Some interesting results are
summarized below:

Faulting of only 0.10 in. (2.5 mm) was predicted at 30 years. A level of
approximately 0.25 in. (6.4 mm) is critical from a roughness standpoint for a
JRCP with long joint spacing. Thus, joint load transfer is adequate over the
30 year period.

Joint spalling (converted from percentage of joints deteriorated to number of
joints per mile) is predicted to increase rapidly after 15 years until at 30 years
about 106 joints per mile (67 joints’km) have deteriorated. Joint repair will
be required after about 15 to 20 years to keep the pavement in service unless
some improvement in joint design is obtained.

Transverse crack deterioration is relatively low over most of the 30 year
design period. However, crack deterioration increases greatly at about 30
years, requiring considerable repair. An increased amount of reinforcement
would reduce the amount of crack deterioration as subsequently shown.

The IRI remains within an acceptable range over the 30 year design period as
indicated by the PSR values.
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The following results show the effect of percentage of steel varied from 0.06 to 0.15

percent of cross-sectional area on deteriorated transverse cracks per mile at 30 years and 30
million CESALSs:

Percentage of Deteriorated
Steel Transverse Cracks/mi
0.06 64 (38 cracks/km)
0.09 36 (22 cracks/km)
0.12 26 (16 cracks/km)
0.15 22 (13 cracks/km)

These results show the strong effect of percentage of steel on crack deterioration. Many
sections in the database have less than 0.09 percent steel, and thus have developed
considerable crack deterioration.

An important point to note here is that these predictions are all for mean distress and IRI
values. No safety factor or reliability considerations have been incorporated into the LTPP
models. If models such as these are used in an actual design procedure and for a given level
of reliability, then consideration must be given to the formal incorporation of design
reliability into the procedure.

Summary and Conclusions

In this chapter the attempts to find improvements to the AASHTO rigid pavement design
procedure have been presented. These attempts, which followed an earlier evaluation of the
AASHTO rigid pavement design equation, have centered on direct improvements of the
equation by the addition of new calibration parameters. Examples of such calibration
parameters include the drainage coefficient (Cd), load transfer factor (J), modulus of
subgrade reaction (k), the loss of support factor (L), design reliability (R), and others.

In the approach presented in this study improvements to the design equation are offered by
supplementing the current design equation with results from the early analysis of the LTPP
data. Recommendations are provided for an improved AASHTO design methodology that
follows the recommendations in Part IV of the 1993 AASHTO Design Guide (Figure 7.1).
Specifically, the approach hinges on the use of IRI and distress prediction models as
pavement design checks to ensure that the structural thickness developed with the AASHTO
design procedure will meet established performance standards.

The models developed in this study for IRI and the key rigid pavement distress types are
presented, and results of sensitivity analyses of these models are given. The models are
based on results from early LTPP analysis and have many limitations. However, these
LTPP models can be continuously improved in the years to come and used in the
recommended improved AASHTO design methodology.
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An example illustrates how this improved design methodology would work. The results of
this example in Table 7.1 show that this approach could easily be used by a design engineer
to predict the performance of a design. The results show that this approach would result in a
more comprehensive design that checks specifically for key distress types. Design
modifications could then be made to reduce the occurrence of any critical distress.
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Evaluation of the Overlay Design Procedures

The revised 1993 AASHTO overlay design procedure is intended to provide overlay
thicknesses that address a pavement with a structural deficiency. A structural deficiency
arises from any conditions that adversely affect the load-carrying capability of the pavement
structure. These conditions include inadequate thickness, as well as cracking, distortion, and
disintegration. Several types of distress (e.g., distresses caused by poor construction tech-
niques, and low-temperature cracking) will not initially be caused by traffic loads, but can
become more severe under traffic to the point that they also detract from the load-carrying
capability of the pavement. Part III, Section 4.1.2 of the AASHTO Guide provides
descriptions of various structural conditions. If a pavement has only a functional deficiency,
procedures in Part II, Chapter 4 and Section 5.3.2 should be used. A functional deficiency
arises from any condition that adversely affects the highway user, including poor surface
friction and texture, hydroplaning as a result of wheel path rutting, and excess surface
distortion (e.g., potholes, corrugation, faulting, blowups, settlements, and heaves).

In the evaluation of the AASHTO overlay design procedures, a matrix of overlay structural
capacities were computed based on the AASHTO overlay design procedures for different
design periods and reliability levels for the available GPS 6, GPS 7 and GPS 9 test sections.
For each reliability level the calculated structural capacities were compared with the actual
structural capacity constructed. Since the reliability levels and overlay design periods used
for structural design of the overlays are not available from the LTPP Data Base, a direct
comparison of the structural capacities was not possible. Hence, a serviceability analysis
was carried out to determine the adequacy of the revised AASHTO pavement overlay design
procedures. 'In instances where no information was available on the serviceability of the
pavements, the distress condition of the pavement was used to determine the adequacy of the
overlay design procedures.
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The AASHTO Overlay Design Procedures

The AASHTO pavement overlay design procedures are based on the concept that time and
traffic loading reduce a pavement’s ability to carry loads. An overlay is designed to increase
the pavement’s ability to carry loads over a future design period. The required structural
capacity for a PCC or AC pavement to successfully carry future traffic is calculated, with the
appropriate AASHTO 1993 new pavement design equation. The effective structural capacity
of the existing pavement is evaluated with procedures for overlay design presented in the
Guide. These procedures can be based on visual survey and material testing results or the
remaining life of the pavement in terms of the traffic that can be carried, or by
nondestructive testing (NDT) of the existing pavement.

An overlay is then designed based on the structural deficiency represented by the difference
between the structural capacity required for future traffic and the effective structural capacity
of the existing pavement. Obviously, the required overlay structural capacity can be correct
only if the future structural capacity and the effective structural capacity are correct.
Therefore, it is important to use the AASHTO rigid and flexible design equations properly to
determine the future structural capacity, and to use the appropriate evaluation methods to
determine the effective structural capacity of the existing pavement.

The general form of this structural deficiency approach can be written as follows:

scoverlay (Scfuture - SCeffecﬁve) (8‘ 1 )
Where:

SCoveriay = structural capacity of overlay;

SChiure = structural capacity of pavement for future traffic; and

SCstective = effective structural capacity of existing pavement.

The structural capacity of overlay is converted to slab thickness, D, for PCC pavement, and
to structural number (SN) for flexible pavement. For flexible pavements, with a known
structural coefficient of AC, the overlay thickness can be determined from the SN.

Based on this principle, for the design of AC overlay of AC pavement Equation 8.2 can be
used to determine pavement overlay thickness according to the AASHTO overlay design
procedure. This equation was the basis for the evaluation of the GPS-6 sections.

5 _ SNovtay - SNeyure ~SN

overlay a

future

effective (8.2)

overlay aover]ay
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Where:
Dgvertay = thickness of AC overlay,

SNovertay = structural number of AC overlay,

SNuure = pavement structural number for future traffic,
SNtfective = effective structural number of existing pavement, and
overlay = structural coefficient of AC overlay.

For an AC overlay of PCC pavement and an unbonded PCC overlay of PCC pavement,
equations 8.3 and 8.4, respectively, are used to determine overlay thicknesses based on the
AASHTO overlay design procedures. These equations were used for the evaluation of the
GPS-7 and GPS-9 pavement sections.

Doverlay = A(Dfutute —Deffecﬁve) (8' 3)
= 2 .
Doverlay - \/(D future -D 2effective) 8.4)
Where:
Druure = structural capacity of pavement for future traffic,
Dettective = effective structural capacity of existing pavement, and
A = factor to convert PCC thickness deficiency to AC overlay
thickness.

Data Used for Evaluation of the Overlay Design Procedures

In all, the LTPP Data Base consists of 60 GPS-6A, 30 GPS-6B, 33 GPS-7A, 15 GPS-7B,
and 28 GPS-9 pavement sections with overlays located throughout the United States and
Canada. A variety of information has been collected for each section including climatic data,
material properties, traffic loads, profile, and distress data. These data were to be used in
the evaluation of the AASHTO overlay design procedures in this study. However, at the
time of the evaluation, the overlay layer data required for this analysis were unavailable for
most of the newly overlaid GPS-6B and GPS-7B sections. Similarly, some of the data
required for the evaluation of the other pavement types were also not available.

In the end, only nine AC overlays of AC pavement, five AC overlays of PCC pavement, and
six unbonded PCC overlays of PCC pavement sections had all the data required for the
evaluation of the AASHTO overlay procedures. The input data required to compute the
future and effective pavement structural capacities for these pavement sections, based on the
AASHTO design procedures, were obtained from the LTPP Data Base. Each of the data
elements used in the analysis of the GPS-6, GPS-7, and GPS-9 sections is described here.
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Initial and Terminal Serviceability

The initial serviceability of the overlays was not available. Therefore, values of 4.2 for
flexible pavements and 4.5 for rigid pavements were assumed for use in the AASHTO
pavement design models for the calculation of structural capacity for future traffic. The
terminal serviceability was set to 2.5 for all overlays. This value was assumed to be the
serviceability at the end of the design life of the overlays.

Current Overlay Serviceability

The current overlay serviceability values used for the evaluation of the overlay design
procedures were based on a recent relationship developed between the International
Roughness Index (IRI) and the Present Serviceability Rating (PSR) for flexible, rigid, and
composite pavement types (17). The nonlinear model shown in Equation 8.5 was found to
best fit the boundary conditions and the actual data.

PSR = S5xe(**RD (8.5)

Where:
a = 0.0041 if IRI is in units of in./mi or 0.26 if IRI is in units of mm/m.

The regression analysis to develop equation 8.5 included all possible sets of data, based on
different states and pavement types. It was determined that there is no significant difference
between models for different pavement types.

Future 18 kips ESALs for the Design Period

The expected number of cumulative 18 kip ESALs for the design period after overlay is
required for evaluating the overlay design procedures. The historical traffic data furnished
initially by the SHAs were generally insufficient to estimate the cumulative ESALSs since the
pavement was originally opened to traffic or since the overlay was placed. Consequently,
the four SHRP Regional Coordination Office (RCO) staffs went back to the SHAs and asked
for their best estimates of cumulative ESALSs to date for each of the GPS test sections, and
these estimates became the historical traffic data available. Therefore, the research staff
assumed an average simple annual growth rate for ESALs of 6 percent for all test sections.
With Equation 8.6 below (based on a standard financial equation) as a basis, Equation 8.7
was developed to predict the ESALSs the pavement experienced during the first year after the
pavement was originally opened to traffic. Given this value and the annual growth rate of 6
percent, Equation 8.8 was used to estimate the ESALs the pavement experienced during the
year it was overlaid.
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CESAL = an @(l + .06)" (8.6)

t=0

© = CESAL —17106 _ cpgay =06 3.7)

1-(1.06)t*! 1 - (1.06)*!

Where:

CESAL = cumulative 18 kip (80kN) ESALSs since pavement was originally

opened to traffic,
t+1 = years since pavement was originally opened to traffic, and
w = ESALs for the first year after pavement was originally opened

to traffic.

With the calculated ESALSs for the first year after the original pavement was opened to
pavement and a six percent annual traffic growth rate, the annual traffic for the year of the
overlay was calculated using Equation 8.8 below:

wlt,) = ©(.06) 8.8

Where:
w(tyw) = annual ESALs for year of overlay, and
tout = number of years of traffic up to the year of overlay.

With the ESALSs for the first year after overlay known, the cumulative ESALs using a 6

percent growth rate were calculated for design periods of 5, 10, 15, and 20 years for use in
the analysis.

PCC Modulus of Elasticity

The SHRP LTPP Data Base contains material testing data which includes PCC compressive
strength, split cylinder tensile strength, and modulus of elasticity. The moduli of elasticity
obtained from the data base were used in the analysis.
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Modulus of Subgrade Reaction

Plate load-bearing tests were not conducted on the LTPP sections; therefore, measured
deflections from falling weight deflectometer (FWD) testing were used to backcalculate the
dynamic modulus of subgrade reaction k for all the sections (2). The dynamic k-value was
reduced by a factor of two to estimate the static k-value (3). Since seasonal deflection data
planned for the future were not available, no seasonal corrections to the backcalculated k-
values were applied. The k-values determined were used directly in the analyses since loss
of support (LOS) was set at zero, according to AASHTO recommendations.

Subgrade Resilient Modulus

Subgrade resilient modulus (My) values are essential in the AASHTO overlay design
procedures for the calculation of structural number for future traffic (SN,) for an AC overlay
of AC pavement. The My values for the evaluations were based on pavement layer moduli
determined from FWD data, by a backcalculation procedure. To be consistent with the
laboratory-measured values used for the AASHO Road Test soil in the development of the
flexible pavement design equation, the backcalculated M values from deflections were
adjusted by multiplying each by a correction factor C = 0.33, as recommended in the 1993
AASHTO Guide, to obtain the final M values that were used in the evaluation of the
overlay design procedures.

Effective Pavement Modulus

For design of AC overlays of AC pavements, the NDT method of calculating the effective
structural number (SN.) is based on the assumption that the structural capacity of the
pavement is a function of its total thickness and overall stiffness. Therefore, an effective
pavement modulus, E,, which characterizes stiffness of the pavement layer, is used in the
calculation of the effective pavement structural capacity. For this analysis, a pavement layer
moduli backcalculation procedure was used to compute the E, values from deflection data.
Specifically, the deflections under the FWD load plate (D,) were used to determine the
effective pavement moduli. To be consistent with the procedure for new AC overlay design
described in Chapter 5, Part II of the 1993 AASHTO Design Guide, the deflections were
adjusted to a reference temperature of 68°F (20°C) prior to backcalculation.

PCC Flexural Strength

One input required for the AASHTO model is the mean flexural strength value at 28 days,
which is determined from a third-point loading test. Since this value is not available in the
LTPP Data Base, it was estimated from splitting tensile strength, with equation 8.9 (7).
Since the splitting tensile strengths in the database were not always 28 day strengths, the
flexural strengths obtained had to be converted to 28 day flexural strengths.

124



S, = 1.02f +210 8.9)

Where:
f,

splitting tensile strength of concrete, psi.

To obtain an estimate of the 28 day PCC flexural strength from the flexural strength
measured at any other time, the following multiple regression equation developed in a
previous study was used?®.

F, = 122 + 0.7 log,, T-.05(log,, T)? (8.10)
Where:
F, = ratio of the flexural strength at time T to the flexural strength at 28
days, and
T = time since slab construction, years.

The flexural strength was then estimated at 28 days with the following equation:

S
S = (——) (8.11)
F,
Where:
S/ = flexural strength at time T, and
Sl = flexural strength at 28 days (third-point loading).

Load Transfer Coefficient, J

The deflection measurements on the test sections considered were taken after the placement
of overlay; therefore, load transfer efficiency could not be calculated for the original PCC
pavement. Instead, the appropriate load transfer coefficients J, based on the type of load
transfer device and type of shoulders for the section, were used. Recommended load transfer
coefficients for various pavements and design conditions are given in Table 2.6 of the 1993
AASHTO Design Guide. Table 8.1 shows the load transfer coefficient values used for this
analysis.
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Table 8.1. Load Transfer Coefficient, J

Shoulder Type AC Tied PCC
Pavement Type Dowels Load Transfer Coefficient
JPCP N 4.10 3.90
Y 3.20 2.80
JRCP N 4.10 3.90
Y 3.20 2.90
CRCP - 3.05 2.60

Drainage Coefficient, Cd

The environmental region in which a section is located and the quality of the drainage for
the section were used to determine the drainage coefficient, Cd. Recommended values of
drainage coefficients for concrete pavements are given in Table 2.5 of the 1993 AASHTO
Design Guide. Tables 8.2 and 8.3 were developed based on the recommendations in the
AASHTO Guide and procedures developed in Selecting AASHTO Drainage Coefficient (9),
to best estimate the drainage coefficient for the sections.

Table 8.2. Drainage Coefficient for Pavements With Permeable Blanket Drains

Moisture Wet Dry
Type of Drains Drainage Coefficient
Permeable Blanket Drains 1.10 1.20
No Permeable Blanket Drains See Table 8.2 See Table 8.3

Table 8.3. Drainage Coefficient for Pavements Without Permeable Blanket Drains

Moisture Wet Dry
Type of Drains Drainage Coefficient
No longitudinal Drains 0.85 0.95 0.83 1.13
Longitudinal Drains 0.90 1.05 1.05 1.18
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Reliability Level

As defined by the AASHTO Design Guide, reliability is the probability that a pavement
structure will survive the traffic expected during the design period. The reliability levels that
were used in the actual designs for each of the overlays were not available. Therefore, a
sensitivity analysis was performed for the reliability levels of 50, 90, 95, and 99 percent.
The actual overlay structural capacities for the pavements were compared with the overlay

structural capacities calculated based on the AASHTO procedure for the different reliability
levels.

AC/PCC Interface Condition

For the five GPS-7A pavements that were evaluated, deflection data were only available from
measurements after overlay. For backcalculation to determine the subgrade k-value from
these deflection measurements, full and continuous contact was assumed to exist between the
AC overlay and the original PCC surface of these pavements. '

Overall Standard Deviation

The overall standard deviation, S,, accounts for the variability associated with design and
construction, including the variability in material properties, roadbed soil properties, traffic
estimates, climatic conditions, and quality of construction. Ideally, these values should be
determined locally. However, in the absence of such values, values of 0.49 and 0.39 were
assumed, respectively, for the flexible and rigid models used to calculate the structural
capacity needed for future traffic.

Using the AASHTO Design Equations to Determine Future Structural
Capacity

The current AASHTO design equations for new pavements have their roots in the original
prediction equations developed at the AASHO Road Test for AC and jointed PCC
pavements. These pavement design equations are used to determine SNy, (SN for flexible
pavements and Dy, (Dy) for rigid pavements. SN; and D; are used to determine the overlay
thickness required to satisfy the structural deficiency of an existing pavement. Therefore,
any assumptions and modifications made to the AASHTO model can be important to the
overlay design procedures. The procedures for using these equations are given in Part II of
the AASHTO Design Guide for new pavement design. Since the AASHTO rigid and flexible

design equations were examined in previous chapters of this report, they will not be repeated
here.
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Determination of Effective Pavement Structural Capacity

The determination of the effective structural capacity prior to overlay was required for this
analysis. Since the pavements had already been overlaid before data were collected to
evaluate the original pavements, this step presented a unique challenge. The procedures used
to determine the effective structural capacity of the original pavements are described below.

AC Overlay of AC Pavement

For AC pavements with AC overlays, the NDT method was used to determine the effective
structural capacity of the AC pavements before overlay. Since deflection data after overlay
were available, these data were used to determine the effective pavement moduli for the
overlaid pavement. Based on these effective pavement moduli determined by a
backcalculation procedure, the effective structural number (SN,,) for the pavement with the
overlay was obtained using Equation 8.12.

(SNeff)w/overlay 0.0045*D *3\/E—p (8' 12)
Where:

E, = backcalculated effective pavement modulus, psi, and

D = thickness of pavement after overlay, in.

With the actual thickness of the overlay known, the structural number for the overlay was
calculated as the product of the thickness and the structural coefficient of the overlay
material. This structural number of the overlay was subtracted from the effective structural
number of the pavement with an overlay to obtain the effective structural number of the
pavement prior to overlay. Equations 8.13 and 8.14, respectively, were used for these
calculations.

SNoverlay = aoverlay >k:Doverlay (8' 13)

(SNeff)Wlo overlay = (SNeff)w/overlay_SNoverlay (8'14)
Where:

Aovertay = overlay structural coefficient (0.44), and

Dovertay = overlay thickness, in.

128



AC Overlay of PCC and Unbonded PCC Overlay of PCC

The condition survey method was used to determine the effective thickness of the original
pavement for AC overlay of PCC pavement and unbonded PCC overlay of PCC pavement,
respectively, using equations 8.15 and 8.16.

Deff = ch *qur *Ffat *D (8. 15)

= (8.16)
D . F*D
Where:

F = joint and crack adjustment factor,

F,. = durability adjustment factor,

F,, = fatigue and damage adjustment factor,

F,, = joint and crack adjustment factor for unbonded overlay, and

D = thickness of pavement before overlay, in.

Since the actual values of the joint and crack adjustment factor F,. (or F,), durability
adjustment factor F,,, and fatigue and damage adjustment factor F;, were not available;
mean values were used in the AASHTO overlay design procedures. A sensitivity analysis
was also conducted by varying F,, for AC overlay of PCC pavements and F, for unbonded

PCC overlay of PCC pavements. Table 8.4 shows the values for the condition adjustment
factors used in the analysis.

Table 8.4. Pavement Condition Adjustment Factors

Pavement Condition Adjustment Factor Range Value Used
Joints and Cracks Adjustment 1.0 - 0.56 0.78
Factor, Fjc
Durability Adjustment Factor, Fdur 1.0-0.8 sensitivity
Fatigue Damage Adjustment 1.0-09 0.95
Factor, Ffat
Joints and Cracks Adjustment 1.0-09 sensitivity
Factor, Fjcu

Evaluation of the Overlay Design Procedures

As indicated, the AASHTO overlay design procedures for AC overlay of AC pavements, AC
overlay of PCC pavements, and unbonded PCC overlay of PCC pavements were evaluated in
this analysis. Essentially, the evaluation comprised a determination of the required overlay

structural capacity with use of the appropriate overlay design procedure and a comparison of
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this structural capacity to that of the constructed overlay, with consideration given to the
current condition of the overlay. '

Required Overlay Thickness

In order to successfully perform the comparison, a knowledge of the specific design period
and reliability level used for the design of the constructed overlay is required. This
information is needed to determine the required structural capacity that has to be compared to
the structural capacity of the constructed overlay. Since information on the design period
and reliability level were not available in the LTPP Data Base, a sensitivity analysis was
conducted which involved determining the overlay structural capacity for several
combinations of design period and reliability level. Therefore, based on the appropriate 1993
AASHTO Guide design equations, the required structural capacity for future traffic, SC; was
obtained for each selected combination of design period and reliability level for the pavement
sections.

The effective structural capacity, SC., of each pavement prior to overlay was also
determined with the procedures outlined previously in this chapter. For the AC overlay of
an AC pavement, a single structural capacity or structural number of the original AC
pavement was determined. For the AC overlay of a PCC pavement, effective structural
capacities of the original pavement were computed for three selected levels of F,,,.
Correspondingly, for the unbonded PCC overlay of PCC pavement, effective structural
capacities were also computed for three selected levels of F-

From these results a matrix of the required overlay structural capacities was computed for
each section of the different combinations of design period and reliability level. For the AC
overlay of AC pavements, overlay structural capacities were determined in terms of the
structural number, as well as the thickness of overlay. For the AC overlay of PCC
pavements and the unbonded PCC overlay of PCC pavements, the overlay structural
capacities were determined in terms of the overlay thicknesses. The matrix for each of the
pavement sections is shown in Appendix C, together with a plot of the results, as well as a
summary of the information available on each section.

Evaluation Procedure

To evaluate the overlay design procedures, the required overlay structural capacities in terms
of thicknesses were compared to the actual overlay structural capacities, with consideration
given to the current serviceability or level of distress. However, since several required
thicknesses are possible depending on the design period and reliability level selected, a
careful consideration of all the information available on a section is essential before any
conclusions can be made. The step-by-step procedure used for the evaluation is described
below.

For each section, the constructed overlay thickness will correspond to a thickness for some
combination of design period and reliability level. Higher design periods or higher reliability
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levels will result in thicker pavements. To begin the evaluation, the location of the
constructed overlay thickness is determined on the matrix or plot of required overlay
thicknesses developed for the section. Of particular interest is the case where the constructed

overlay thickness—and the equal required overlay thickness—is for a design life equal to the
age of the overlay.

Where such a case existed, a review of the performance of the overlaid pavement measured
at a particular point in time was then conducted to determine the adequacy of the overlay
design procedure. Theoretically, an overlay designed with the AASHTO overlay design
procedure for a specific design period will reach its terminal serviceability at the end of its
design life. Consequently, for these cases the serviceability level of the overlaid pavement

compared to the terminal serviceability will indicate the adequacy of the overlay design
procedures used.

Based on this same principle, this process was used to evaluate the adequacy of the
AASHTO overlay design procedures where possible by comparing the thickness and
condition of the constructed overlay to the required overlay, as long as the design period was
assumed to equal the age of the overlay. Table 8.5 shows the comparisons that were used
for the evaluation based on this principle, as well as the conclusions to be drawn from the
comparisons. In cases where information on the current serviceability was not available, an

attempt was made to use the pavement’s distress information to estimate the current
serviceability.

Table 8.5. Approach Used to Evaluate the AASHTO Overlay Design Procedure

Comparison of the Actual Overlay Comparison of Current Comment on the Adequacy of
Thickness with the AASHTO-designed Overlay Serviceability with the | the AASHTO Overlay Design
Overlay Thickness Based on Design Terminal Serviceability Procedures
Life Equal to the Actual Age of the
Overlay and a Specific Reliability Level
Constructed > Required AASHTO Overlay PSR > 2.5 No Conclusion
Thickness Thickness
Overlay PSR = 2.5 Inadequate Design
Overlay PSR < 2.5 Inadequate Design
Constructed = Required AASHTO Overlay PSR > 2.5 Conservative Design
Thickness Thickness
Overlay PSR = 2.5 Adequate Design
Overlay PSR < 2.5 Inadequate Design
Constructed < Required AASHTO Overlay PSR > 2.5 Conservative Design
Thickness Thickness
Overlay PSR = 2.5 Conservative Design
Overlay PSR < 2.5 No Conclusion
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It should be noted that current serviceability is not considered the only criteria for
evaluating the condition of an overlay. For example, an unbonded PCC overlay may have a
low current serviceability because of joint spalling but could be structurally adequate for
traffic loading. The results from the evaluations of the AASHTO overlay design
procedures conducted for the available GPS-6, GPS-7, and GPS-9 sections and for the
different reliability levels, determined by the evaluation process outlined above, are
discussed below for each of the 500 ft (152.4 m) sections.

Evaluations for AC Overlay of AC pavement

Section 016012, Alabama

This section was overlaid in 1984 with a 1.1 in. (2.8 cm) AC layer. After 8 years the
current serviceability is 3.27. Based on the AASHTO design procedure, a 3.2-in. (8.1 cm)
overlay is required for the section to reach the terminal serviceability of 2.5 in 10 years at 50
percent reliability. Distress data collected in 1989 show that there were 322 ft (98.1 m) of
low-severity longitudinal cracks and 3 medium- and 26 low-severity transverse cracks. Even
though a thin overlay was placed, it performed very well, which suggests the adequacy of the
AASHTO overlay procedure in this case.

Section 016109, Alabama

This section was overlaid with a 4 in. (10.1 cm) overlay in 1981. There was no distress
after 8 years and the serviceability measured after 11 years was 4.08. This section would
require a 2.6 in. (6.6 cm) overlay for a design life of 10 years at a reliability level of 50
percent, or a 5.1 in. (13 cm) overlay at a reliability level of 95 percent. Based on this
information, it can be said that the AASHTO design procedure is conservative if a 95 percent
reliability level is assumed. However, no conclusion can be made if a 50 percent reliability
level is assumed.

Section 351002, New Mexico

The overlay on this section was placed in 1985. No distress was visible when a distress
survey was done in 1989. The serviceability measured in 1991 was 4.08. According to the
AASHTO overlay design procedure, the actual overlay of 3.5 in. (9 cm) should last for more
than 15 years, even at 95 percent reliability. Since serviceability measurement is available
only for an overlay age of 6 years, no specific conclusion can be made as to the adequacy of
the design procedure at this point.
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Section 356033, New Mexico

This section was overlaid with 3 in. (7.6 cm) of AC in 1981. After 8 years of service there
were 304 ft (93 m) of low-severity longitudinal cracks and 16 low-severity transverse cracks
on the pavement. The serviceability of the pavement after 10 years was 3.47. According to
the AASHTO procedure, a 3.14 in (8 cm) overlay is required for a 20 year design life and
99 percent reliability level. Since the pavement is performing adequately after 10 years in
service, no conclusion can be made at this time as to the adequacy of the overlay design
procedure.

Section 356401, New Mexico

This section was overlaid in 1984 with a 3.5 in. (9 cm) thick AC overlay. A distress survey
in 1989 indicated that there were only 54 ft (16.5 m) of longitudinal cracks of low severity
and nine transverse cracks of low severity. The serviceability in 1991 was 4.14 after seven
years of service. An overlay design based on the AASHTO procedure indicates that, even
for a 50 percent reliability level, an overlay thickness of 3.7 in. (9.4 cm) should last 10 years
before reaching terminal serviceability. Given the condition of the pavement in 1989 and
1991, it is highly probable that the overlay thickness of 3.5 in. (9 cm) will last for that same
period. The data for this pavement, therefore, suggest that the overlay design procedure
provides an adequate design.

Section 486079, Texas

This section was overlaid in 1985 with 2.5 in. (6.4 cm) of AC overlay. The distress survey
conducted in 1990 indicated that the section had developed a lot of distress. There were
353 ft (107.6 m) of low-severity and 173 ft (52.7 m) of medium-severity longitudinal cracks,
in addition to 9 low-, 13 medium-, and 6 high-severity transverse cracks. The serviceability
measured in 1991 was 2.55, which is approximately the terminal serviceability. This section
is a classic case for the evaluation of the AASHTO overlay design procedure, because it has
actually reached terminal serviceability. From the design matrix for this section, it can be
seen that 2.4 in. (6.1 cm) of overlay is required for a 5 year design life and 95 percent
reliability, which is approximately the same thickness as the actual overlay. Hence, the data
from this section suggest that the AASHTO overlay design procedures are adequate with 95
percent reliability, but inadequate with 50 percent reliability.

Section 486086, Texas

This section was overlaid with 1.5 in. (3.8 cm) of AC in 1985. The distress, measured 6
years after overlay, indicated that there were only 134 ft (40.8 m) of low-severity
longitudinal cracks. The serviceability measured in the same year was 4.13. Based on the
AASHTO design procedure, it was determined that no overlay is required for this section.
The thin overlay may have been provided for functional reasons. Therefore, no conclusion
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can be made as to the adequacy of the design procedure.

Section 486160, Texas

This section was overlaid with 1.5 in. (3.8 cm) of AC in 1981. After 8 years there were
538 sq ft (50 m? of low-severity alligator cracks; 13 ft (4 m) of medium- and 299 ft

(91.1 m) of low-severity longitudinal cracks; 3 medium and 55 low-severity transverse
cracks; and 876 sq ft (81 m?) of bleeding area observed. The serviceability observed in 1991
was 3.06. This section had almost reached its terminal serviceability in 10 years. Based on
the AASHTO procedures, this section requires at least 4 in. (10.1 cm) of overlay for a
design life of 10 years at a 50 percent reliability level, or 6.7 in. (17 cm) of overlay at a 95
percent reliability level. The data observed from this section shows that a much thinner
overlay lasted 10 years, which suggests that the overlay design procedure is conservative.

Section 486179, Texas

This section was overlaid in 1975 with a 5 in. (12.7 cm) AC overlay. After 15 years of
service, only 80 ft (24.4 m) of longitudinal cracking and 5 ft (1.5 m) of low-severity
transverse cracks were observed. The serviceability observed in 1991 was 3.81. This
section has performed very well. The required overlay thickness for this section, based on
the AASHTO procedure, with a 20 year design life and at a reliability level of 95 percent,
would be 3.1 in. (7.9 cm). Therefore, since the overlay provided is much thicker than that
required by the design procedure, no conclusion can be made about the adequacy of the
design procedure.

AC Overlay of PCC Pavement

Section 87035, Colorado

This section was overlaid with 4.8 in. (12.2 cm) of AC in 1984. By 1990 12.8 ft (3.9 m) of
medium-severity and 300.3 ft (91.5 m) of low-severity longitudinal reflective cracking had
developed in the pavement. These numbers represent a high level of distress in the pavement
in a relatively short 6 year period, which indicates an inadequate thickness may have been
applied. A comparison of the overlay thickness applied to that suggested by the AASHTO
overlay design procedure bears this finding out. Even for a minimum design period of 5
years and a reliability level of 50 percent, the AASHTO procedure requires a minimum
thickness of 6.72 in. (17.1 cm). For this pavement, it appears that a thicker overlay in the
order of the thickness required by the AASHTO overlay design procedure was needed.
Overlay design procedure bears this finding out.
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Section 175453, Illinois

A 2.71 in. (6.9 cm) overlay was placed on this section in 1984. After 5 years of service and
over 8 million ESALSs, the pavement had developed 20 ft (6.1 m) of low-severity longitudinal
cracking and 912 ft (277.9 m) of low-severity longitudinal reflective cracking. This high
level of distress is understandable since the AASHTO procedure requires a minimum overlay
thickness of 4.57 in. (11.6 cm) for a 5 year design period and this high level of traffic, even
for a 50 percent reliability level. Therefore, the AASHTO procedure appears correct in its
requirement for a thicker overlay for this sample.

Section 283097, Mississippi

In 1984 a 2.73 in. (6.9 cm) overlay was placed on this section which has experienced
relatively low traffic (1 million ESALs in 5 years). The AASHTO overlay design procedure
suggests that, even for the high-reliability level of 99 percent, an overlay thickness of only
2.54 in. (6.5 cm) is required to meet the traffic demands for a 5 year design period. Since
these thicknesses are practically equal, it is not surprising that the pavement section was
showing some distress after 5 years in service with 186 ft (56.7 m) of low-severity
longitudinal cracking and one high-severity transverse crack. The AASHTO overlay design
procedure appeared to anticipate the actual condition after 5 years reasonably well.

Section 287012, Mississippi

This pavement section has an overlay 3.54 in. (8.9 cm) thick that was placed in 1985. Ina
distress survey after 4 years, two low-, five medium-, and 11 high-severity transverse
reflective cracks were measured, as well as 24 ft?(2 m?) of patches. The pavement had a
serviceability level of 3.38 approximately two years later. For a design period of 5 years
and a reliability level of 95 percent, the results obtained indicate that a thickness similar to
that placed on the pavement would be required to meet traffic needs during that period.
Thus, for these conditions, the AASHTO overlay design procedure provided a thickness
comparable to that constructed.

Section 467049, South Dakota

This section was overlaid in 1983 with 4.49 in. (11.4 cm) of PCC. This thickness
corresponds to thicknesses determined for the following combinations of design period and
reliability level or higher, based on the AASHTO pavement overlay design procedure: (1) a
10 year design period and 99 percent reliability, (2) a 15 year design period and 90 percent
reliability, and (3) a 20 year design period and 90 percent reliability. In a 1989 distress
survey, the following distresses were measured on the pavement: (1) 475 ft (144.8 m) of
low-severity longitudinal cracking, (2) six medium- and 56 low-severity transverse cracks,
(3) 495 ft (150.9 m) of low-severity longitudinal reflective cracking, and (4) seven medium-
and four low-severity transverse reflective cracks. These numbers represent considerable
distress for the 500 ft (152.4 m) pavement section in 6 years and approach terminal
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serviceability. Since the minimum design period is about 10 years for a 4.49 in. (11.4 cm)
thick overlay, according to the AASHTO overlay design procedure, the procedure can be
said to be inadequate in this instance.

Unbonded PCC Overlay of PCC Pavement

Section 69049, California

An unbonded PCC overlay 7.5 in. (19.1 cm) thick was placed on this pavement in 1986.
After 3 years, there were several distresses manifested on the pavement. These included (1)
21 ft (6.4 m) of high-, 123 ft (37.5 m) of medium-, and 76 ft (23.2 m) of low-severity
longitudinal cracking; (2) one medium-severity transverse crack; (3) 13 ft (3.9 m) of high-,

2 ft (0.61 m) of medium-, and 9 ft (2.7 m) of low-severity longitudinal joint spalling; (4) one
high-, 6 medium-, and 9 low-severity transverse joint spalls; and (5) 26 sq ft (2.4 m?) and 21
sq ft (2 m?), respectively, of medium- and low-severity AC patches.

According to the results obtained, even at 50 percent reliability, the pavement should have
lasted for at least 5 years without the provision of an overlay. Since the 7.5 in. (19.0 cm)
overlay showed considerable distress after 3 years in service, in the absence of other known
reasons, the AASHTO overlay design procedure can be said to be inadequate.

Section 89019, Colorado

This section with 7.9 in. (20.1 cm) of original PCC surface was overlaid with 9 in. (22.9
c¢m) of unbonded PCC in 1986. During a survey in 1989, the only distress noted on the
pavement were transverse joints with spalling. However, there were a high number (16) of
these low-severity spalls. Overlay design for the original pavement based on the AASHTO
overlay design procedure indicates that a minimum of 3.4 in. (8.6 cm) of overlay should
have been adequate for a 5 year design life, even at a 50 percent reliability level. This
finding seems to indicate that the AASHTO overlay design procedure does not provide
sufficient overlay thickness. However, it is important to note that the occurrence of joint
spalls are usually associated with other design and materials features that cannot necessarily
be corrected by increasing thickness.
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Section 89020, Colorado

This section was overlaid with 8 in. (20.3 cm) of PCC in 1986. A survey in 1989 showed
that the pavement had developed one medium-severity transverse crack and 7 ft (2.1 m) of
longitudinal joint spalling. A review of the thicknesses calculated with the AASHTO overlay
design procedures indicates that, for a reliability of 50 percent, a 6.11 in. (15.5 cm) thick
overlay would be adequate for a 5 year design period. Because the 8 in. (20.3 cm) overlay
placed does not show considerable damage, no conclusion can be made in this case about the
adequacy of the overlay design procedures.

Section 269029, Michigan

This section was overlaid with 7.3 in. (18.5 cm) of PCC in 1984. A survey in 1989 showed
the only distress in the. pavement 5 years after overlay was 1.3 ft (0.4 m) of low-severity
longitudinal joint spalling. For a design period of 5 years, and for 50, 90, 95, and 99
percent reliability, the AASHTO design procedure provides for a maximum overlay thickness
of 0, 3.9 in. (9.9 cm), 4.8 in. (12.1 cm), and 6.3 in. (15.8 cm) for this section, respectively.
Since the overlay thickness placed on the pavement is thicker than any of the thicknesses
required by the AASHTO overlay design procedure, and the pavement is in good condition,
no conclusion can be made about the adequacy of the procedure in this instance.

Section 269030, Michigan

A 6.8 in. (17.3 cm) overlay was placed on this section in 1984. This thickness corresponds
to the thickness determined from the AASHTO pavement overlay design procedure for a
design period of 15 years and a reliability level of 99 percent, and for a design period of 20
years and a reliability level of 95 percent. A distress survey in 1989 showed that the
pavement was still performing well, having only 5.15 ft (1.6 m) of low-severity longitudinal
cracking and 3.09 ft* (0.3 m?) of low-severity AC patches. Based on these observations, no
conclusions can be made about the adequacy of the AASHTO pavement overlay design
procedure in this instance.

Section 489167, Texas

This section was overlaid with 10 in. (25.4 cm) of PCC in 1988. This thickness is higher
than any thickness determined for this section based on the AASHTO pavement overlay
design procedure for the combination of design periods and reliability levels investigated in
this study. The thickest PCC overlay determined for a maximum design period of 20 years
and a reliability level of 99 percent was 9.8 in. (24.8 cm). However, a distress survey in
1989 showed considerable distress on this 1 year old overlay—19.86 ft (6.1 m) of low-
severity longitudinal joint spalling and 11 transverse joints with low-severity spalls. Since
joint spalls are more related to materials and construction, the information on this section
cannot be used to determine the adequacy of the AASHTO overlay design procedure.
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Summary and Conclusions

LTPP data from GPS-6A, GPS 6-B, GPS-7A, GPS-7B, and GPS-9 were used to evaluate
the 1993 version of the AASHTO overlay design equations. While data on design life and
levels of reliability sought were not available, a limited set of test sections were identified
that had sufficient data to support limited evaluations. Even for these test sections, it was
necessary to use existing data to estimate values for some of the inputs to the design
equations. The procedures used for estimating specific input values are described.

The design equations were then used to predict the overlay thicknesses required, and these
thicknesses were compared with the thicknesses of the overlays actually constructed. The
results from recent profile measurements and distress surveys were also used to evaluate the
adequacy of the AASHTO design equation for establishing an appropriate design overlay
thickness. A summary of the results from these comparative evaluations appears in Table
8.6.

Although these evaluations are seriously constrained by data limitations, the equation for
this small data set of 5 test sections appears to work quite well for AC overlays of PCC.
The evaluations were generally inconclusive for AC overlays of AC and unbonded PCC

overlays of PCC.

It is hoped that data regarding design periods and levels of reliability used for the design of
overlays to be used for comparative evaluations will be available in the future. Conclusive
evaluations are probably not possible without this information because the comparisons
should be made on the same design basis.
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Table 8.6. Results from Comparative Evaluations of 1993 AASHTO Overlay

Equations
Test Section Type of Results From Comparisons
Number Pavement
Conservative Adequate Inadequate Inconclusive
016012 AC/AC X
016109 " X
351002 " X
356033 " X
356401 " X
486079 " @95%
486086 " Reliability X
486160 " X
486179 " X
Subtotals for AC/AC: 1 3 0 5
087035 AC/PCC X
175453 " X
283097 " X
287012 " X
467049 " X
Subtotals for AC/PCC: 0 4 1 0
69049 PCC/PCC X
89019 " X
89020 " X
269029 " X
269030 " X
489167 " X
Subtotals for PCC/PCC: 0 0 1 5
Overall Subtotals: 1 7 2 10
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Conclusions

One of the primary objectives of the Strategic Highway Research Program (SHRP) Long-
Term Pavement Performance (LTPP) effort is to evaluate existing pavement design
methodologies. With the pavement design guidelines developed from the American
Association of State Highway Officials (AASHO) Road Test being the most commonly
accepted design procedure utilized by State Highway Agencies (SHAs) to date, the American
Association of State Highway and Transportation Officials (AASHTO) pavement design

equation represented an excellent starting point for early analyses of the SHRP LTPP data
base.

Taking into account the fact that rigid and flexible pavements have unique performance
characteristics and, in turn, the design equations are unique, the evaluation of AASHTO
flexible and rigid pavement equations were addressed separately. Although there are some
similarities in the conclusions reached from evaluations of these two design equations, the
conclusions will be discussed separately here to maintain the distinctions between the
pavement types.

As part of this study, the new AASHTO pavement overlay design procedures were also
evaluated. These overlay design procedures were recently introduced in the 1993 AASHTO
Design Guide. The conclusions reached from the evaluation of the AASHTO overlay design
procedures are also discussed.

Conclusions from the Evaluation of the AASHTO Flexible Pavement
Design Equation

With data from 244 General Pavement Studies (GPS)-1 and GPS-2 in-service flexible
pavement test sections across the country, the LTPP Data Base offers an unprecedented
opportunity for evaluating the ways in which flexible pavements are designed and their
associated performance. In these early analyses of the SHRP LTPP Data Base, all efforts
were concentrated on evaluating the AASHTO pavement design equation and the suitability
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of the data collected from these test sections for use in such evaluations.

From these evaluations, it has been established that the existing AASHTO flexible
pavement design equation does not currently predict the pavement performance of the
SHRP LTPP test sections very accurately, and, unfortunately, generally predicts many more
equivalent single axle loads (ESALs) needed to cause a measured loss of Present
Serviceability Index (PSI) than the pavements had actually experienced. Many explanations
have been identified. Although modifications have been made over the years to expand the
inference space of these design equations, any such modifications cannot be without their
own limitations. From the studies conducted here, it is evident that environmental
properties such as rainfall, freezing index, and freeze-thaw cycles have a greater impact on
pavement performance than that accommodated by the AASHTO flexible pavement design
equation.

Similarly, although modifications were made to accommodate the subgrade resilient moduli
value in the flexible pavement design equation, these modifications were based on the
subgrade resilient modulus measured in the laboratory at the AASHO Road Test (3,000
psi). There is little similarity, however, between the subgrade properties measured as part
of the SHRP LTPP program (both laboratory and backcalculated subgrade moduli) and the
3,000 psi value measured at the Road Test. This finding appears to reflect changes in
techniques for measurement of subgrade moduli since the Road Test.

The use of the composite PSI also presents some limitations in the use of the AASHTO
equation. With composite indices of this type, where all distresses are lumped together, it
is difficult to adequately assess to what a change in performance is attributed. That is to
say, one cannot tell if the pavement is deteriorating as a result of increased rutting,
increased roughness, one of the other distresses that may be present, or some combination
of all of the above. This, in turn, makes it difficult to clarify what the cause(s) for this
change in performance might be. For the PSI equation in particular, change in performance
is very closely associated with roughness. Cracking and patching in the flexible PSI
equation have little if any impact on the associated changes in performance.

Similarly, by lumping all the structural properties together, the contribution each specific
layer makes to the performance of the pavement structure is also masked. It quickly
becomes evident, when comparing the performance of these test sections versus their
predicted performance, that one in. of asphalt will not always be equivalent to 3.1 in. of
granular base, as the structural number concept would dictate. This relationship will
naturally vary, depending on the structural properties of the other layers incorporated in the
pavement, the environmental conditions in which the pavement is situated and numerous
other factors.

It should be noted that all these conclusions are based on the data currently available for
analysis. At the time of these studies, only half the laboratory subgrade moduli tests had
been completed. Few of the test sections exhibited a serious loss in PSI, typically displayed
a PSI loss less than 0.5. Also, only one round of monitoring data was available for
consideration. Despite these limitations, the shortcomings of the AASHTO flexible

pavement design equation are sufficiently apparent so that the causes can readily be discerned.
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Another observation from these studies is that the 2.5 PSI level, generally considered to
represent failure at the Road Test, does not really represent highway practice. It appears
from the data that those individuals making maintenance and rehabilitation decisions
generally do not allow deterioration to an extent that would result in a 2.5 PSIL.

Conclusions from the Evaluation of the AASHTO Rigid Pavement Design
Equation

Since the development of the original AASHTO pavement design equation in 1960,
following the AASHO Road Test, several changes have been made to the model to improve
it. These changes have included the addition of a number of calibration parameters to
extend the equation outside of its original inference space. The SHRP LTPP data offered a
unique opportunity to evaluate the equation with data from in-service pavements, under
diverse traffic and environmental conditions to determine its adequacy. In all, data from 54
jointed plain concrete pavement (JPCP), 34 jointed reinforced concrete pavement (JRCP),
and 32 continuously reinforced concrete pavement (CRCP) in-service test sections were
available for the evaluation, and the results obtained provide some valuable insights into the
adequacy of the AASHTO rigid pavement design equation.

Overall, the results obtained were mixed. An evaluation of the original 1960 AASHTO
rigid pavement design equation conducted to provide a benchmark to compare the
evaluation of the current 1993 equation proved that the original equation does not
accurately predict cumulative ESALs. In all cases, for the two rigid pavement types that
the original equation applied to (JPCP and JRCP), the equation overpredicted cumulative
ESALs. This finding means that the original AASHTO equation overestimates the traffic
loadings required to cause a given drop in the serviceability of a pavement. In fact, 34 out
of the 54 JPCP sections and 23 out of the 34 JRCP sections used in this evaluation had
ratios of predicted ESALs to actual ESALs in excess of two. This ratio was approximately
10 for 6 of the JPCP and 6 of the JRCP test sections. '

The results were also mixed when the original equation was evaluated with the data divided
into four groups on the basis of four U.S. environmental regions. The original AASHTO
equation proved inadequate for JPCP design in the wet-freeze region (the location of the
AASHO Road Test), but was statistically an unbiased predictor of ESALs in the other
environmental regions. For JRCP, the original equation was statistically an unbiased
predictor of ESALs only in the wet-no freeze region, and was found to be an inadequate
predictor of performance in the other three regions. Together, these results lead to the
conclusion that the original AASHTO equation is not a good predictor of pavement
performance.

The evaluation of the 1993 model provided significantly better results. For the JPCP,
JRCP, and CRCP sections evaluated, the results obtained indicate that the current 1993
AASHTO rigid pavement design equation appears to provide more or less unbiased
predictions in that the plots of predicted to actual KESALs seem to center on the lines of
equality. This finding was true in all cases when the sections for each of the pavement
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types were evaluated together, as well as when they were divided into groups based on the
four environmental regions of the United States (Table 6.3).

These results initially provided some optimism about the adequacy of the current 1993
AASHTO rigid pavement design equation. However, a closer examination of the results
indicated that the scatter was major when viewed arithmetically, instead of in the log-log
plots necessary to include all the points. A look at the ratios of predicted ESALSs to actual
ESALs indicated that 14 out of the 54 JPCPs, 19 out of the 34 JRCPs, and 14 out of the 32
CRCPs still had ratios in excess of two. That is, for 14 JRCPs, 19 CRCPs and 14 CRCPs,
the 1993 AASHTO still predicted more than twice the ESALs or traffic loading required to
cause a given loss in serviceability. This ratio was approximately 10 for 4 of the JPCP, 5
of the JRCP, and 5 of the CRCP sections.

A sensitivity analysis, conducted to determine how a change in initial serviceability used for
the evaluation would affect these results, further reinforced the need for the initial results to
be viewed with some caution. An average initial PSI value of 4.25 had been used in the
evaluation. When this was changed to 4.5, the value assumed in the original 1960
AASHTO equation, the 1993 AASHTO model overpredicted the number of cumulative
ESALs for each of the three pavement types for evaluations with all the data available
(Table 6.4).

For evaluations on an environmental regional basis the JPCP model appeared to be an
unbiased predictor for all four regions. The model was also an unbiased predictor for the
wet-freeze and dry-freeze regions for JRCP (there were no data for the dry-no freeze
region). For CRCP, the dry-no freeze region was the only environmental region for which
the model was not an unbiased predictor.

These mixed results indicate a need for enhancements to the current AASHTO rigid
pavement design equation to improve predictions if design is to continue to be based on
serviceability loss. However, distress prediction models were provided for preliminary
development of a new methodology recommended for future use. This methodology
involves the use of predictive equations for distress and International Roughness Index (IRI)
in lieu of the current design model. Because they are preliminary, they are only
recommended as design checks to other design procedures at this time. Although the IRI
and distress models provided are preliminary in nature, an example given on how they can
be used to evaluate or develop pavement design illustrates their applicability.

Conclusions from the Evaluation of the AASHTO Overlay Design
Procedures

The overlay design procedures included in the 1993 AASHTO Guide have never been
evaluated. This study provided an opportunity for limited evaluation of the procedures with
data from the overlaid GPS sections in the SHRP LTPP program. The evaluations were
conducted by comparing designs obtained with the procedures to the overlay thicknesses
placed, with consideration given to the serviceability and/or state of distress of the overlaid
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pavements.

Only limited conclusions were obtained from these evaluations because of a lack of data.
Much of the information on the pavements prior to overlay, which was required for a
thorough evaluation, could not be obtained. This information included the condition of the
pavements prior to overlay and the reliability level and design period ESALs. In addition,
the design procedures actually used to design the overlays were not known. As a result, a
number of assumptions had to be made and existing data were used to estimate the other
inputs required for the evaluations.

In spite of these drawbacks, the evaluation provided a first opportunity for an extensive use
of the overlay design procedures. For the small data set available for this study, the results
indicated that the overlay design procedures appear to work well for AC overlay of PCC
but were inconclusive for AC overlays of AC and unbonded PCC overlays of PCC. Further
evaluations will be necessary in order to reach final conclusions on the adequacy of overlay
design procedures.

Recommendations for Future Research

With the limited performance data available for these studies, one must be cautious when
using the equations established from these early analyses. Based on the conclusions noted
above, several data elements warrant further evaluation and consideration for incorporation
in future pavement design equations. Similarly, there is a need for additional sections to
address gaps noted in the overall sampling plans and/or biases identified during analysis.

Differences in the laboratory and backcalculated subgrade moduli noted in these analyses
indicate that either some relationship needs to be established between the two or separate
design equations need to be established based on the source of subgrade moduli values
utilized in design. As a minimum, future pavement design must incorporate subgrade
moduli values more consistent with those generated by contemporary testing methods and
representative of the subgrades across North America. Incorporation of environmental
properties should also be studied further to establish how best to accommodate these values
and their effects on pavement performance.

In the evaluation of the AASHTO rigid pavement design equation, a need for improved
guidance on the determination of the inputs necessary for the use of the equation also
became evident. A number of the specific factors on which further guidance is required are
as follows:

u Drainage coefficient, C; — Improved guidelines for this factor are required
because the current ones are very subjective. These guidelines must

recognize that a C, of 1 represents the poorly drained Road Test pavement in
a wet-freeze zone.
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] Effective k-value — The procedures for determination of the effective k-
value need improvement, especially as to loss of support (LOS).

] Pavement type — The model should consider each of the three pavement
types separately and not lump them together.

L Load transfer factor (J) — This factor actually adjusts only for slab corner
cracking (stress difference due to protected and unprotected corners). The J
factor does not adjust for the effect of load transfer on faulting and erosion.
A new factor is needed that will consider doweled versus nondoweled
pavements and the diameter and spacing of the dowels.

] Reinforcement effects — A new factor is needed to consider the effects of
slab reinforcement, which is not directly considered in the AASHTO model
but significantly affects performance for JRCP and CRCP.

] Climate effects — The current AASHTO design model does not seem to
provide for an overall factor to accurately adjust for the different climates.
Factors such as freeze-thaw (and corrosion from deicing salts) are not
considered, which leads to different results in different environmental regions.

It is also recommended that future design equations be structured so that individual layers
and their associated properties can be distinguished in the design process. Similarly, future
pavement design analysis should provide the ability to consider the specific distresses of
concern separately, rather than with composite indices. With modern computer technology
and the growing knowledge of how various distress mechanisms manifest themselves, these
more detailed analyses will not only become more critical, but considerably less
complicated.

Finally, because the current data base is heavily biased toward pavements with coarse
subgrades, in order to adequately assess the effects of subgrade soil volume changes,
additional test sections with fine-grained subgrades should be sought. In order to
effectively evaluate these effects, it may also be necessary to include additional data such as
swell rates or heave potential.
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Appendix A

Sections and Corresponding Data Utilized in Evaluation of
the AASHTO Flexible Pavement Equation
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Sections and Corresponding Data Utilized in Evaluation of
the AASHTO Flexible Pavement Equation

(1) RAIN = AVERAGE ANNUAL RAINFALL

(2) AVG32 = AVERAGE ANNUAL NUMBER OF DAYS BELOW 32 F (0 C)
(3) CALC PSI = 5.03-1.91*LOG(1+AVG SV)-1.38*(AVG RD*2)

(4) OBS PSI LOSS = INIT. PSI. - CALC. PSI

AL 11001} 1WNF 42 28 498 38 Oct-80} 04/03/92 1.74 04/05/89 022 4.13 44 030| 174 0.84 2002
AL 11011} 2WNF 70 124 543 69 Jun-85| 02/11/92 2.60 01/10/90 0.15 394 42 0.26 64 088 430
AL 11019f 1WNF 28 10 63.0 25 Oct-86| 07/11/91 3.15 05/15/89 0.36 367 42 053] 122 083 582
AL 11021 1WNF 45 22 535 39 Jun-85| 04/03/92 1.95 04/05/89 0.20 4.08 45 042 91 083 621
AL 14072 2WNF 24 26 525 20 Mar-89| 01/29/92 2.05 12/16/89 0.11 4.09 42 0.11 M 083 324
AL 14073 2WNF 72 97 66.1 72 Jun-88| 04/15/92 5.60 01/10/90 0.10 345 42 0.74) 167 084 645
AL 14125 1WNF 41 20 564 38 Jun-72| 06/07/90 1.56 02/12/91 0.30 413 43 0.19] 189 083 3412
AL 14126| 1 WNF 68 93 634 65 Jun-88| 02/10/92 1.77 06/05/89 0.11 4.17 42 0.03] 8657 0.78 2428

AZ 41001 1 DNF 12 0 95 8 Sep-78| 03/24/90 3.40 11/20/89 081 290 43 1.37] 1923 3.23 22240
AZ 41002| 1 DNF 157 97 144 149 Feb-80| 04/04/90 7.15 11/03/89 0.27 3.19 4.1 0.95| 1013 3.24 10310
AZ 41003 1 DNF 15 0 77 12 Aug-75] 03/25/90 222 11/20/89 0.29 394 44 0.50| 1388 3.23 20351
AZ 41006 1 DNF 15 ¢ 84 12 Sep-78| 03/24/90 2.13 11/20/89 0.20 4.03 44 0.38| 1624 3.17 18779
AZ 41007 1DNF 14 0 90 11 Sep-78| 03/24/90 4.94 11/20/89 061 3.04 4 097 1787 3.23 20671
AZ 41015 1 DNF 56 3 179 47 Jun-79| 03/17/90 2.14 11/30/80 038 3.88 44 043| 860 12.88 9291
AZ 41017 1DNF 41 4 219 34 Aug-76| 03/19/90 2.48 11/30/89 0.26 3.90 45 0.64| 1007 9.69 13740
AZ 41018f 1 DNF 28 4 226 22 Aug-76) 03/19/90 2.89 11/30/89 0.26 3.81 46 0.79| 1166 12.74 15902
AZ 41021 1DNF 53 21 109 44 Jun-79| 03/30/90 2.85 11/03/89 052 354 39 031} 1005 298 10885
AZ 41022 1DNF 73 41 117 64 Jun-79| 03/30/90 0.92 11/03/89 0.51 413 43 019} 110 468 1194
AZ 41024| 1 DNF 147 117 139 139 Jun-79| 04/03/90 3.58 11/03/89 0.16 3.73 4.1  0.39] 1012 3.17 10980
AZ 41025 1 DNF 150 116 145 142 Oct-78| 04/03/90 4.27 01/09/91 0.16 362 38 020f{ 995 3.24 11456
AZ 41034| 1 DNF 7 0 53 5 Jul-75| 03/26/90 3.26 11/20/89 0.31 369 43 0.63] 559 553 8246
AZ 41037 1 DNF 7 0 541 5 Jun-85| 03/27/90 4.95 11/03/89 0.10 354 39 032] 545 939 2628
AZ 41062| 2 DNF 158 103 148 150 Jun-79| 04/02/90 7.75 11/03/89 0.14 320 38 0.59| 1001 10853
AZ 41065| 2 DNF 136 60 14.1 128 Jun-79| 04/02/90 4.26 11/03/89 0.21 3.59 3.9 026 992 4.70 10755
AR 52042 2WNF 69 79 5938 65 Dec-72| 12/11/91 13.12 11/16/89 0.29 272 47 197 70 1.04 1330
AR  53048| 2 WNF 45 122 549 47 Sep-83| 12/10/91 10.54 11/16/89 0.12 298 4.7 170 35 147 291
AR 53071| 2WNF 79 297 468 87 Feb-88| 08/30/90 1.09 03/15/89 0.14 439 4.7 0.29| 464 162 1196

CA 62002 2 DF 156 143 204 146 Dec-80] 05/11/91 4.88 00/07/89 0.26 347 41 061 94 049 982

CA 62004 2DNF 11 0 125 9 Oct-76| 02/20/91 6.29 11/19/89 0.16 3.35 41 0.79| 628 1.75 9047
CA  62038f 2WNF 10 1 7113 6 Sep-72| 02/11/91 2.59 08/23/89 012 3.95 43 035| 161 2,00 2963
CA 62041} 2WNF 14 1 480 10 Jul-71| 02/11/91 3.34 08/23/89 0.19 3.76 43 054 211 200 4140
CA  62051] 2DNF 18 1 265 12 Feb-81| 05/04/91 2.07 08/30/89 0.17 4.06 41 0.00| 266 102 2731
CA 62053 2DNF 22 0 246 16  Jun-73| 05/03/91 3.62 08/24/89 024 368 43 062| 588 5.80 10552
CA 62647 2DNF 54 2 270 45 Sep-76| 05/02/91 1.99 08/28/89 0.15 4.09 43 020 914 6.80 13417
CA 67452 2 WNF 68 4 330 59 Jun-72| 05/04/91 3.60 08/24/89 0.15 3.73 43 056 18 029 332
CA 67491 2 DNF 4 0 59 3 Aug-67| 03/13/91 9.04 11/12/89 021 3.06 43 124} 627 1.93 14817
CA 68151| 2DNF 22 12 128 18 Jun-73| 01/25/90 1.77 1112/89 0.22 412 43 0.18| 708 1.82 11803
CA 68153 1 DNF 3 ¢ 188 2 Aug-77| 02/14/91 5.04 11/16/89 0.16 350 43 0.30 48 049 644
CA  68156] 1 DNF 13 0 158 9 Sep-74| 02/14/91 4.40 11/16/89 0.14 360 43 0.70 55 1.01 909
CO 81029 1 DF 178 1395 14.7 209 Jun-72] 10/29/91 10.51 10/20/89 0.19 295 42 1.23 2 0.76 422
CO 810471 1DF 128 1218 115 163 Oct-83| 04/13/90 3.72 10/20/89 0.24 3.66 42 054 37 058 242
CO 81053 1 DF 146 464 100 150 Nov-84| 10/27/91 1.86 10/19/89 0.26 4.06 42 012 59 056 415

CO 82008 2 DF 136 471 120 146 Oct-72| 11/14/91 3.98 10/17/89 042 345 42 0.60 69 074 1321
CT 918031 1 WF 90 399 496 103 Jul-85| 07/26/91 5.86 07/31/89 0.11 342 42 0.78 26 065 157
DL 101450| 2 WF 77 241 442 83 Jun-76| 03/27/90 6.38 10/05/89 0.13 335 4.2 0.84| 371 160 5127
FL 121030 1 WNF 1 0 555 1 Jun-71| 0712/90 2.99 04/18/89 019 3.83 44 057] 427 105 8167
FL 121060 1 WNF 1 0 565 0 Dec-79| 07/06/90 1.29 04/18/89 0.11 433 44 0.07| 208 105 2210
FL 123996 1 WNF 13 2 549 11 Jun-74} 07/02/90 3.50 04/17/89 0.18 3.74 42 046| 133 105 2141
FL  124087| 2WNF 32 14 579 29 Nov-85| 06/12/90 1.07 04/28/89 0.17 439 44 001 524 106 2416
FL 124105 1 WNF 10 4 462 7 Dec-84| 06/20/90 1.79 04/12/89 0.26 408 43 022 115 105 639
FL  124107{ 1 WNF 2 0 477 2 Jan-85| 07/12/90 242 12/06/89 0.13 3.99 44 041 103 105 568
FL 124154} 1 WNF 6 0 51 5 Jun-70| 07/04/91 7.15 12/09/89 0.24 321 44 1.19| 144 1.05 3039
GA 131001] 1WNF 49 26 444 41 Sep-86| 05/22/92 2.07 03/20/89 0.17 4.06 43 0.19] 101 094 578
GA  131004| 1 WNF 54 47 447 49 Jun-83| 05/26/92 1.41 01/08/90 0.08 429 44 0.10 35 0.61 315

GA 131005| 1 WNF 37 11 413 32 Jun-86| 05/27/92 1.99 01/08/90¢ 0.1 4.11 43 0.20 173 1.06 1034
GA 131031 1TWNF 74 91 598 69 Jun-81| 05/20/92 1.55 01/09/90 0.3 4.5 42 0.01 58 084 637
GA 134096| 2 WNF 32 12 49.1 28 Jun-85| 06/13/90 3.07 05/10/89 0.07 386 42 034 12 0.65 62
GA  134420| 2 WNF 21 7 469 18 Apr-84| 07/17/90 3.08 04/11/89 022 3.80 42 040| 209 1.06 1316
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(1) RAIN = AVERAGE ANNUAL RAINFALL
(2) AVG32 = AVERAGE ANNUAL NUMBER OF DAYS BELOW 32 F (0 C)

(3) CALC PSI = 5.03-1.91*LOG(1+AVG SV)-1.38*(AVG RD*2)

(4) OBS PSI LOSS = INIT. PSI. - CALC. PSI
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(1) RAIN = AVERAGE ANNUAL. RAINFALL

(2) AVG32 = AVERAGE ANNUAL NUMBER OF DAYS BELOW 32 F (0 C)
(3) CALC PSI = 5.03-1.91*LOG(1+AVG SV)-1.38*(AVG RDA2)

(4) OBS PSI LOSS = INIT. PS!. - CALC. PSl

NM 351003 1 DNF 98 107 146 95 Apr-83| 11/18/91 2.90 12/05/89 0.1 387 43 044 27 032 233
NM 351005 1 DF 130 245 158 129 Jul-84| 11/21/91 1.05 10/31/89 03 428 43 0.05 26 065 192
NM 351022! 1 OF 131 465 111 142 Oct-86| 11/20/91 2.36 10/31/89 0.2 3.99 43 032 33 032 170
NM 351112] 1DNF 87 93 168 85 Jun-84) 10/18/90 1.30 12/05/89 0.14 431 43 0.02 33 032 208
NM  352006| 2 DF 170 611 122 180 Sep-79| 11/20/91 4.54 10/31/88 0.27 351 43 0.80 24 032 298
NM  352118| 2 DF 100 195 183 101 Sep-77| 11/14/91 286 01/24/90 0.18 3.86 43 046} 333 065 4732
NY 361011 1 WF 89 830 387 129 Jun-84| 12114/91 276 08/08/89 0.14 391 4.7 0.74] 166 134 1252
NY 361643 2 WF 81 8185 372 164 Feb-79| 04/19/91 9.65 08/09/89 0.26 2.97 42 1.18| 1398 6.38 17086
NY 361644] 2WF 109 1757 439 174 Aug-80| 05/07/91 235 08/09/89 0.09 402 42 0.18 4 221 479
NC 371006f 1 WNF 57 76 451 54 Jul-82| 03/14/91 2.08 10/13/89 0.05 4.09 42 0.10| 387 066 3370
NC 371024 1 WNF 96 120 494 93 Nov-801 10/31/91 437 11/03/89 0.27 354 42 0.66 18 042 203
NC 371028 1WNF 62 61 474 57 May-82] 01/30/90 2.35 10/12/89 0.33 3.88 42 032 61 073 475
NC 371030 1 WNF 54 37 458 50 Dec-84} 12/11/89 245 10/12/89 0.20 3.95 42 0.25 97 0.70 488
NC 371040 1 WNF 114 289 560 117 Sep-78| 10/29/91 291 11/03/89 0.31 3.77 42 040 94 0.72 1240
NC 371352 1WNF 73 68 48.6 67 Jul-80| 11/01/91 3.26 03/09/89 0.21 3.77 42 042 68 072 768
NC 371645] 2WNF 60 38 436 55 Apr-86| 12/13/90 1.77 03/15/89 0.18 4.14 42 0.06| 116 0.77 546
NC 3718011 1WNF 86 164 413 84 May-74| 10/30/91 5.13 03/15/89 0.24 345 42 0.75| 220 065 3844
NC 371802 1WNF 63 85 440 60 Oct-85| 03/16/91 1.99 10/13/89 0.17 4.08 42 0.1 54 1.01 294
NC 371803 1 WNF 112 171 516 109 Dec-77| 10/30/91 3.13 11/03/89 023 3.78 42 040 111 0.71 1545
NC 371814 1 WNF 104 127 539 101 Sep-70] 10/31/91 228 03/13/89 0.14 4.02 42 017 7 0.70 1505
NC 371817| 1WNF 74 86 445 71 Dec-83{ 12/16/90 3.11 10/15/89 0.26 3.77 42 043 25 074 176
NC 372818] 2WNF 70 86 449 65 Aug-81] 03/19/91 284 10/13/89 03 3.80 42 040 4 073 424
NC 372824 2WNF 70 103 489 68 Oct-83| 11/01/91 1.88 10/13/89 0.08 414 42 0.06 101 0.74 607
ND 382001] 2WNF 87 2623 193 180 Jul-80| 07/20/91 6.40 06/26/89 0.27 327 42 0.86| 144 205 1591
OK 404086] 2 DNF 73 168 336 76 Jun-70| 01/30/91 1.95 04/26/89 0.28 4.03 4.2 0.16| 183 195 3784
OK 404161 1 DNF 48 113 408 48 Jun-82| 09/28/90 2.93 01/08/90 0.20 3.84 42 036 103 168 856
OK 404164 2 DNF 86 291 2838 92 May-78| 10/02/90 2.88 01/23/90 0.15 3.87 4.2 032} 135 210 1683
OK 404165 2 DNF 84 311 316 91 Jun-84| 10/02/90 6.12 01/23/90 0.25 3.32 42 088 242 203 1538
PA 421597 1WF 105 1015 315 152 Sep-80| 11/20/90 14.26 08/25/89 0.13 275 45 1.7 17 062 176
PA 421599} 1WF 132 903 434 165 Aug-87| 10/10/91 4.33 07/18/89 0.14 362 45 0.85 40 068 169
PA 421605 1WF 106 609 43.1 128 Sep-71| 11/19/90 6.25 08/20/89 0.57 294 45 154| 178 0.83 3415
SC 451008 1WNF 79 61 364 132 May-70| 05/21/92 5.42 01/09/90 0.18 344 41 065 22 1.00 482
SC 451011 1t WNF 18 9 493 16 Jun-85| 04/28/92 4.89 04/11/89 0.26 347 41 063| 367 068 2533
SC 451024 1WNF 49 15 457 44 Aug-85| 04/30/92 7.76 01/09/90 0.13 321 40 0.79 1 0.60 7
SC 451025 1WNF 76 59 447 72 Feb-80| 04/30/92 11.03 03/14/89 0.27 287 42 133 5 0.29 65
TN 471023f 1 WNF 90 181 540 88 Jun-72| 06/13/91 2.54 10/27/89 017 3.94 4.7 0.74| 820 0.76 15612
TN 471028] 2 WNF 87 194 425 88 Sep-89| 05/15/92 4.35 11/01/89 0.22 357 45 0.88 90 115 243
TN 4710291 2WNF 73 150 608 73 Oct-82( 05/08/90 1.45 01/10/90 010 427 49 062 48 129 365
TN 472001| 2WNF 71 256 635 78 Juk-89( 05/24/90 1.40 11/13/89 03 417 47 052| 298 197 267
TN 472008 2WNF 72 226 55.7 78 Jun-73} 05/24/90 9.62 01/11/89 0.07 306 48 1.70| 130 117 211
TN 473075| 1 WNF 87 236 56.8 90 Jun-71] 06/17/91 5.95 11/04/89 02 338 44 1.00 30 106 604
TN 473101 2 WNF 87 174 525 86 Jan-80| 06/17/91 6.67 11/04/89 0.13 3.32 45 1.09 24 126 271
TN 473104] 1 WNF 97 161 480 95  Jun-86| 05/15/92 13.21 11/01/89 0.15 280 42 1.39 3 1.32 19
TN 479024 2WNF 85 233 534 88 Jun-77| 05/17/90 6.53 11/04/89 013 3.33 4.7 137 15 119 199
TN 479025| 2 WNF 87 174 525 86 Jan-80| 05/16/90 6.33 11/04/89 0.14 335 45 1.15 24 126 245
TX 481039] 1WNF 34 63 366 32 Jun-82; 10/24/91 3.90 03/22/89 0.16 368 3.7 0.00| 225 102 2117
TX 4810477 1 DNF 103 253 223 106 Jul-71| 11/13/91 940 04/24/89 020 3.03 41 1.05( 290 1.08 5903
TX 4810487 1DNF 62 46 154 58 Nov-74| 11/24/91 6.27 12/06/89 0.20 333 42 0.87 49 060 839
TX 481049 2WNF 31 37 459 30 Jun-84| 01/23/92 3.73 03/04/90 0.31 361 4.2 059| 429 1.02 3283
TX 481050 1 WNF 20 27 380 18 Jul-85| 04/04/91 2.86 01/04/90 0.14 388 45 062 4l 0.77 407
TX 481056| 1 DNF 112 316 19.8 119 Jun-70{ 10/30/90 5.12 01/11/90 0.18 348 42 0.72 54 113 1098
TX 481060 1 DNF 9 6 33.1 9 Mar-86| 04/22/91 3.53 06/18/90 0.18 3.73 4.2 047 167 096 858
TX 481065] 1 DNF 113 301 182 120 May-70| 10/25/90 14.10 01/24/90 024 270 42 149 98 124 2014
TX 481068 1 WNF 45 97 502 44 Jun-87| 10/23/91 2.34 03/23/89 0.11 4.01 42 0.18] 114 090 500
TX 481069 1 WNF 41 69 373 39 Jun-77| 03/13/90 2.75 01/30/90 0.34 3.77 4.2 0.00| 197 093 2519
TX 481070 t1WNF 42 72 375 40  Juk77] 03/13/90 2.36 03/23/89 0.13 400 42 0.00| 197 093 2503
TX 481076| 1 DNF 83 145 187 84 Nov-771 10/23/90 4.41 12/06/89 0.19 3.58 4.2 062| 119 107 1543
TX 481077 1DNF 74 182 228 75 Jan-82| 11/08/91 285 04/25/89 0.38 3.71 45 0.78} 194 099 1915
TX 481087f 1WNF 51 65 452 49 Dec-73| 08/22/90 2.50 03/27/89 0.18 395 4.2 0.25| 185 0.97 3090
TX 481092} 1DNF 22 17 266 20 Sep-83| 12/06/91 4.68 04/14/89 0.13 357 42 0.63 72 083 598
TX 481094] 1DNF 20 16 320 26 Aug-76| 04/11/91 247 10/14/90 0.18 3.95 4.5 0.55 10 042 142
TX 481096 1 DNF 19 12 258 17  Apr-81| 12/06/91 6.85 10/14/90 030 320 3.7 050 76 075 816
TX 481109] 1WNF 17 35 40 17 Jun-84| 12/16/91 4.39 01/04/90 023 3.56 38 024 182 096 1374
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(1) RAIN = AVERAGE ANNUAL RAINFALL

(2) AVG32 = AVERAGE ANNUAL NUMBER OF DAYS BELOW 32 F (0 C)
(3) CALC PSI = 5.03-1.91*LOG(1+AVG SV)-1.38*(AVG RDA2)

(4)OBS PSI LOSS = INIT. PSI. - CALC. PS|

10):

481111y 1 DNF 81 139 192 81 Sep-72| 10/22/90 11.85 12/09/89 0.16 2.88 4.0 1.12 76 099 1384
481113 1WNF 33 38 503 31 Jan-86| 12/18/91 2.10 03/04/90 022 4.02 42 0.17] 138 097 822
481122] 1 DNF 29 8 269 26 Feb-74| 04/10/91 248 04/14/89 0.22 393 42 027 42 069 729
481130 1DNF 25 14 353 22 Aug-72| 03/18/92 17.18 04/11/89 045 234 42 1.72 44 079 87
481168 1 WNF 53 73 478 52 Sep-85; 04/25/90 3.03 03/27/89 0.10 386 4.2 0.34 2 0.64 7
481169 1 WNF 44 54 474 41 Aug-72| 04/23/30 4.50 03/04/90 021 355 4.2 065 84 0.97 1491
481174 1 DNF 8 3 3141 7 May-75| 03/23/92 2.50 10/17/90 0.23 392 42 0.09 86 0.71 1462
481178] 1WNF 20 54 335 22 Jun-89| 03/18/92 6.37 04/10/89 014 335 42 0.83 66 079 185
481181 1 DNF 13 10 258 12 May-80{ 02/28/92 545 04/14/89 0.27 3.38 38 042| 207 092 2452
481183 1DNF 77 140 212 77 Feb-75| 09/12/90 13.96 12/06/89 0.23 2.71 4.2 148} 147 1.14 2293
482108 2 WNF 5 6 412 4 Aug-85| 04/23/91 3.25 03/08/90 0.16 3.80 4.2 040 19 058 108
482172] 2DNF 55 110 205 57 Aug-82| 09/13/90 2.83 12/06/89 0.14 3.89 4.0 0.11| 404 106 3284
483608 1 DNF 71 160 237 73 Jun-74] 11/08/91 10.47 04/19/89 024 293 42 126 45 120 786
483669 2WNF 30 29 441 28 May-83| 12/17/91 4.10 03/04/90 0.34 352 4.1 058 73 089 628
483679 2WNF 34 41 453 34 Jun-88| 12/17/91 13.00 03/04/90 0.10 2.83 3.8 0.97 76 083 268
483689 2 WNF 41 36 463 40 Apr-87( 12/16/91 9.85 03/04/90 0.13 3.03 42 117 66 084 309
483729{ 1 DNF 4 4 265 4 Jun-83| 03/19/92 3.20 06/22/90 0.39 3.63 3.7 0.02] 216 0.76 1899
4837391 1 DNF 7 6 239 6 May-82| 03/20/92 844 06/22/90 0.20 3.11 42 1.09( 156 095 1538
483749 1 DNF 9 10 238 9 Mar-81} 03/23/92 3.73 10/17/90 0.18 3.70 43 060| 115 089 1277
483855 1WNF 20 19 388 18 Oct-79{ 03/18/92 4.09 06/18/90 0.29 3.56 4.2 064 132 091 1648
483865| 1 DNF 38 43 274 36 Jul-69| 09/17/90 3.98 10/27/90 0.25 3.61 42 0.59 65 091 1383
489005 1DNF 21 13 296 18 Sep-86| 04/12/91 3.62 10/14/90 0.12 3.74 45 0.76 29 068 131
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491001} 1 DF 139 249 87 139 Jun-82| 08/04/89 2.08 10/30/89 029 3.98 42 022 68 093 485

501002 1 WF 99 1379 411 157 Aug-84 05/09/91 18.43 08/09/89 0.26 248 4.2 172 59 056 401

501004 1 WF 81 1185 306 133 Sep-84| 05/08/91 18.12 08/09/89 0.15 255 4.2 159 37 055 246
VA 511002] 1WF 120 305 424 126 Oct-79| 03/27/91 23.47 10/15/89 0.31 225 42 194 115 0.77 1326
VA 511023 1 WF 86 146 463 86 Dec-80| 06/23/91 4.73 10/12/89 043 333 45 1.16| 626 0.77 6618
VA 512004 2 WF 86 121 447 83 Dec-81| 11/02/91 5.28 10/13/89 0.13 348 46 1.1 89 077 881
VA  512021| 2 WF 84 164 518 92 May-85! 03/26/91 5.43 10/15/89 0.24 341 43 089| 135 077 795
WA 531002 1 DF 79 401 180 96 Jun-84! 10/26/89 7.61 07/18/89 0.17 320 45 1.29 62 114 337
WA 531801| 1WNF 96 76 842 85 Oct-73| 11/12/89 247 07/17/89 0.13 398 45 052 42 1.03 673
WV 541640 2 WF 88 251 435 95 Jun-83| 11/13/91 948 09/26/89 0.18 3.04 44 136 68 069 574
WY 561007 1 DF 147 1066 92 175 Jul-80| 10/22/90 2.66 09/26/89 0.19 390 42 029 26 1.00 267
WY 562018 2 DF 146 1142 105 184 Oct-83| 10/24/90 4.64 10/08/89 0.10 358 39 0.30 79 100 556
WY 562019] 2 DF 130 1276 139 172 Julk85] 10/29/90 3.84 10/08/89 0.15 369 42 050 116 100 618
WY 562020{ 2 DF 158 1155 143 188 Jul-85] 10/27/90 3.03 09/27/89 0.1 385 42 034 112 100 594
WY 562037| 2 DF 128 1540 63 191 Sep-85| 11/08/90 3.68 10/20/89 0.11 3.73 42 046 44 1.01 230
WY 567773| 2 DF 128 1163 95 169 Jan-87| 10/24/90 2.15 10/08/89 0.13 4.05 4.1 0.04 16 0.99 61
AB  811803| 1 DF 100 2763 17.7 203 Oct-84| 05/10/90 258 07/05/89 0.18 3.93 41 010 154 123 863
AB 811804| 1 DF 112 2411 188 200 Sep-82| 05/10/90 9.73 07/05/89 0.16 3.03 36 041 74 093 565
AB 811805} 1 DF 126 1735 154 188 Jun-80| 05/09/90 8.95 07/07/89 025 3.04 35 042 119 1.00 1185
AB 812812 2 DF 127 1937 163 197 Jun-85] 05/09/90 37.44 07/07/89 0.14 198 38 175 23 095 112
MB 831801 1 DF 89 3012 17.7 197 Jan-84| 05/27/90 4.86 06/29/89 0.21 350 45 093] 121 138 7717
MB 836454| 2DF 80 3133 191 190 Jun-77| 05/27/90 26.95 06/28/89 028 2.16 46 234| 173 192 2243
MB 841802 1 WF 90 1974 421 173 Oct-80| 08/20/91 8.74 08/16/89 023 3.07 41 1.01 199 493 2171
ON 871620 1 WF 74 1450 418 147 Jun-81| 04/25/91 5.33 08/24/89 04 328 46 1.18] 115 0.78 1139
ON 871622| 1 WF 102 2000 455 184 Jun-76| 04/26/91 7.28 08/24/89 02 320 48 149 115 078 1707
ON 871680 2 WF 87 1175 338 150 Jun-85| 07/10/91 7.92 08/24/89 0.13 319 42 095 177 0.78 1084
ON 871806{ 1 WF 82 1222 339 149 Jun-85| 07/10/91 7.60 08/24/89 0.13 322 42 080| 177 0.78 1084
ON 872811{ 2 WF 80 966 358 135 Jun-77| 07/09/91 4.28 08/31/89 0.13 3.63 42 049 96 0.79 1356
ON 872812 2 WF 80 1025 409 138 Jun-81| 05/29/91 2.82 08/31/89 0.17 3.88 42 022| 200 0.78 1994
PEI 881645 1 WF 71 1522 395 158  Juk87| 08/21/91 4.54 08/16/89 0.08 360 4.3 067| 132 082 545
PEI 881646 1 WF 78 1375 415 152 Jun-80{ 08/21/91 5.49 08/16/89 0.32 3.34 36 0.21 36 089 408
PEl 881647 2 WF 78 1521 449 162 Oct-86| 08/22/91 7.35 08/16/89 0.15 324 43 098 60 106 295
QE 891021 1 WF 78 2173 409 167 Jun-83| 07/16/91 558 08/14/90 0.34 331 45 1.19] 301 130 2448
QE 891125| 1 WF 74 2143 447 168 Oct-78| 09/04/91 12.93 08/14/90 040 262 44 1.75F 341 130 4404
QE 891127 1 WF 84 2206 420 176 Nov-78| 09/04/91 17.71 08/22/89 0.51 224 42 193 24 013 306
QE 892011 2 WF 73 2208 500 171 Oct-79| 07/13/91 5.18 08/18/89 0.17 348 48 121 60 130 707
SK 901802 1 DF 83 3127 169 195 Jul71} 10/21/89 11.24 07/01/89 039 274 42 136| 115 336 2110
SK 906405] 1 DF 81 3396 15.1 198  Oct-69| 10/22/89 4.29 07/04/89 014 362 44 0.75 39 100 778
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(5) DRAINAGE COEFF(m)=(1.2-.006*avg ann rain)*(1.2-.006*%-200)

CODES FOR VARIOUS MATERIAL TYPES: (6) SN=.44"AC+.34"BBB+.23"NBBB+m*(.14*UBB+.07*SUBB+.15*SS)
SEAL COATS (SC):2,11,71-73 (7)BACKCALCULATED Mr=((FWD Load)*0.2792)/((Defl. at 60")*60)
ASPHALT (AC): 1,319,700 (8)PREDICTED PSI LOSS = 2.7{(W/p)/S}*B
BIT BOUND BASE (BBB): 3,9,10,320-330 where: p= 0.64(SN+1)**9.36
NON BIT BOUND BASE (NBBB): 331,333,334,339,340,730 8= [10"(-8.07)[*(Mr**2.32)
UNBOUND BASE (UBB): 302-305,308,337 B= 0.4 + 1084/[(SN+1)**5.19]
SUBBASE (SUBB): 201-292,306,307 (9) PREDICTED KESALS=(S*((SHRPAPSI/2.7)**(1/B)))*p/1000

STAB SUBGRADE (SS): 181-183,333,338 (10)R = PREDICTED KESALS / SHA ESTIMATE OF TOTAL KESALS

10:

11001] 07 26 00 00 254 00 0.0| 095| 453]SAND 10 30 20 24.1 48183} 004 67412 33.67
11011| 00 10 50 00 100 00 00} 0.83| 3.30{SAND 12 31 19 416 78184} 0.00 91064 211.66
11019 00 65 00 00 55 00 0.0] 085 3.51[SAND 1 8 7 284 47666| 0.01 74430 127.95
11021| 00 76 00 00 174 00 0.0 0.69} 5.03|SLT 7 28 21 69.0 53226| 0.02 238795 384.27
14072 00 37 44 00 46 82 00| 1.06] 442[SAND . . 0 20622| 0.03 3596 1.1
14073] 00 86 00 00 52 00 49| 075/ 488/SAND 25 58 33 452 81070 0.01 1692194 2623.49
14125 00 96 00 00 00 65 00| 089 463|SAND 10 26 16 284 58336 0.05 49270 14.44
14126| 00 131 00 00 184 00 00| 0.84} 7.92|SAND 110 9 299 45831 0.02 4701 1.94
41001} 06 119 00 00 00 00 00| 1.22| 5.24[SAND 8 26 18 221 40280| 0.17 1787225 80.36
41002| 07 93 04 00 00 00 00} 1.26| 423GRAVEL 0 0 0 118 75029| 0.08 1047945 101.64
41003 05 126 00 00 00 60 00| 1.17| 6.04[SAND 13 31 18 304 48395 0.10 754328 37.06

41006 04 82 00 00 00 85 00 1.18} 4.31[SAND 8 25 17 284 4739%4| 0.16 84432 4.50
41007} 05 60 00 00 00 108 0.0f 1.21| 3.56(GRAVEL 9 29 20 233 39043 0.26 102696 497
41015 05 84 00 00 00 99 00} 1.15| 449/GRAVEL 28 46 18 243 107844 0.04 814765 87.69
41017 07 82 00 00 00 112 00| 1.15| 451/GRAVEL 12 28 16 203 30629| 0.22 89723 6.53
41018 04 80 00 00 00 72 00| 1.03| 404 GRAVEL 10 26 16 38.7 43633 0.17 177656 147
41021| 05 47 00 00 84 00 0.0 1.22| 3.50[SAND 0 0 0 214 40854| 0.14 27018 248
41022 04 79 00 00 95 00 0.0} 1.23| 5.11[SAND 023 23 189 72840| 0.02 105927 88.72
41024| 07 1041 00 00 00 63 00| 1.14| 495(GRAVEL 22 36 14 29.5 38096 0.14 87335 7.95
41025| 08 68 00 00 00 72 00 1.21] 3.60[GRAVEL 0 19 19 183 92295{ 0.03 112525 9.82
41034 06 33 00 00 00 111 00| 1.28| 245[SAND 0 9 9 169 28093 1.13 6272 0.76
41037| 06 21 00 00 101 0.0 0.0} 1.35| 2.83[SAND 00 0 82 26219| 0.09 6292 239

41062| 03 54 112 00 00 00 45| 125| 7.03|GRAVEL 6 18 12 124 59317{ 004 5067581 466.94
41065| 04 48 137 00 00 00 55| 121} 7.77(GRAVEL 14 37 23 195 30785| 0.06 324693 30.19
52042 00 52 00 66 00 00 0.0} 064] 381[SILT 2 20 18 73.7 16898( 0.14 54443 40.95
53048/ 04 47 00 74 00 00 00[056| 3.77|[CLAY 10 33 23 937 25413} 0.02 107566 369.69
53071 05 159 00 00 00 00 00| 060f 700|CLAY 18 35 17 921 58819] 0.02 879387 735.13
62002] 02 45 00 104 82 00 00| 1.12] 566|GRAVEL 8 27 19 265 33196| 0.04 335619 341.78
62004} 07 34 00 53 00 306 00| 1.09| 506[SILT 2 14 12 378 27178 0.8 187206 20.70

OO0 EEERRRRRNRNRRRRRRRRRREFPEREEE

62038 02 42 00 66 47 00 0.0] 0.81]| 3.90[SAND 4 20 16 262 34966| 0.08 27762 9.37
CA 62041 02 45 00 65 114 00 00] 1.02| 510{GRAVEL 6 22 16 13.7 60247| 0.05 566124 136.75
CA 62051 04 49 00 65 35 00 00| 1.17| 422(GRAVEL 16 36 20 127 68648] 0.03 9 0.00
CA 62053 00 41 00 222 00 00 00| 095 691/CLAY 25 43 18 493 45718| 0.06 2782617 263.72
CA 62647 01 37 00 53 00 119 00| 1.10| 3.76[SAND 14 30 16 232 61696| 0.08 44857 3.34
CA 67452] 05 34 00 67 102 00 00} 087| 428|CLAY 18 38 20 557 39837 0.02 104104 313.19
CA 67491| 05 38 00 48 00 00 00| 131 2.78[SAND 0 0 0 130 34051} 0.51 26817 1.81
CA 68151 08 41 00 60 00 00 00 1.27] 3.18[SAND 0 0 0 113 44853| 0.12 16906 143
CA 68153] 03 38 00 00 64 150 00| 0.89| 341|CLAY 44 66 22 63.0 14225| 0.10 2151 3.34
CA 68156] 01 38 00 00 75 00 00| 123 296|GRAVEL 0 0 0 149 50511} 0.00 59953 65.94
CO 81029 04 41 00 00 56 132 0.0 1.08} 3.65/SAND 4 12 8 384 17276] 0.05 23390 55.45
CO 81047 00 36 00 00 182 00 0.0} 1.36| 504[CLAY 17 31 14 28250| 0.03 91218 377.14
CO 81053] 00 46 00 00 285 00 00{ 074| 498|CLAY 22 40 18 918 28624 0.04 4705 11.33
CO 82008 04 32 77 00 50 00 00| 088 465[CLAY 26 41 15 693 20917| 0.10 38477 29.12
CT 91803| 00 72 00 00 120 00 0.0 1.08] 4.99[SLT . . 0 57546| 0.01 959810 6127.58
DL 101450 00 93 00 63 00 00 00} 0.93| 554[SAND 0 0 0 335 35831 009 700806 136.70
FL 121030 00 33 00 00 9.8 171 00| 1.03| 4.11;SAND 0 0 0 1.3 39330| 0.3 89364 10.94
FL 121060 00 40 00 00 110 00 00| 1.02] 3.32|GRAVEL 0 0 0 3.5 64148) 0.01 15817 7.16
FL 123996 00 15 00 00 80 142 00| 1.01| 281|SAND 0 0 0 57 29644| 0.05 10460 489
FL 124097 04 136 00 63 00 00 00} 092| 743]SAND 0 0 0 205 63908 002 701 0.29
FL 124105| 03 20 00 00 101 133 00| 1.09| 3.44;SAND 0 0 0 295 27698] 0.03 7107 11.13
FL. 124107 06 21 00 00 120 00 00| 1.03] 266|SAND 0 0 0 114 34189 0.00 11228 19.77
FL 124154 00 13 00 00 00 88 00| 1.34| 1.40|SAND 0 0 0 89 37809 2E+07 762 0.25
GA 131001 00 81 00 00 86 00 00} 0.82| 456[SILT 20 50 30 529 18115| 0.08 3063 5.30
GA 131004| 00 68 00 00 75 00 00]081| 3.84[CLAY 13 38 25 550 38618} 0.01 5356 17.02
GA 131005/ 00 77 00 00 91 00 0.0 093} 457[SAND 6 23 17 372 59965 0.02 56400 54.57
GA 131031] 06 105 00 00 00 88 00| 0.79| 5.11[SAND 8 31 23 437 16291 0.08 5 0.01
GA 134006 00 41 00 63 00 00 0.0f091| 3.25/SAND 11 27 16 333 63285} 0.00 72302 1164.18
GA 134420] 00 49 00 79 00 00 0.0] 1.00| 3.97|]SAND 0 0 0 194 28073] 0.6 21580 16.40
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CODES FOR VARIOUS MATERIAL TYPES:
SEAL COATS (SC):2,11,71-73
ASPHALT (AC): 1,319,700

ID
ID
D
ID
ID
D
ID
ID
L
L
IN
IN
1A

KS
KS
KS

ME
ME
ME
ME
ME
MD
MD
MD
MD

MA
Mi
Mi
Ml
Mi
MN
MN
MN
MN
MN
MN
MN
MN
MN
MS
MS
MS
MS
MS
MS
MO
MO
MO
NE
NH
NJ
NJ
NJ
NJ
NJ
NJ
NJ

161001
161005
161007
161009
161010
161021
169032
169034
171002
171003
181037
182008
191044
196150
201005
201006
201009
211010
211014
211034
231001
231009
231012
231026
231028
241632
241634
242401
242805
251002
251003
251004
261001
261004
261010
261013
271016
271018
271019
271023
271028
271029
271085
271087
276251
281001
281016
281802
283083
283085
283087
291002
201008
291010
311030
331001
341003
341011
341030
341031
341033
341034
341638

0.3
0.2
0.2
0.2
0.2
03
03
03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
05
0.6
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0

BIT BOUND BASE (BBB):3,9,10,320-330
NON BIT BOUND BASE (NBBB): 331,333,334,339,340,730

UNBOUND BASE (UBB): 302-305,308,337
SUBBASE (SUBB): 201-292,306,307
STAB SUBGRADE (SS): 181-183,333,338

34
36
34
104
10.7
5.6
58
8.9
132
121
14.4
25.7
16.0
4.8
13.2
11.8
11.1
6.7
11.2
14.6
8.9
5.7
93
64
6.4
6.8
36
1.7
9.9
78
6.6
9.6
22
42
22
6.7
3.0
44
4.9
10.5
9.6
84
11.3
15.7
74
9.7
79
79
16
11
6.0
6.8
14
13.9
72
84
75
9.0
6.0
73
74
121
9.2

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
12,0
0.0
43
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
48
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
73
0.0
0.0
0.0
0.0
0.0
0.0
42
0.0
36
6.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6.8
4.5
5.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
7.0

9.2
113
206

0.0

54

53
232
18.8

0.0

0.0

0.0

0.0

0.0

3.0

0.0

0.0

0.0

9.2

0.0

0.0

0.0
30.0

0.0

0.0
19.8

0.0

0.0

0.0

0.0

0.0

0.0

0.0
10.9

5.0
114

48

6.5

5.2

64

40

0.0

0.0

0.0

0.0
10.2

0.0
0.0

0.0

0.0

0.0

0.0

6.0

48

4.2

0.0

0.0
334
37.8

6.8
11.0
15.0

0.0

0.0

0.0
0.0
0.0
9.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
3.0
0.0
34.8
18.3
0.0
0.0
109
6.0
48
124
13.2
246
0.0
0.0
19.0
18.6
0.0
0.0
0.0
6.8
0.0
0.0
0.0
0.0
0.0
8.2
19.5
20
0.0
0.0
0.0
0.0
0.0
0.0
0.0
322
0.0
0.0
234
0.0
0.0
0.0
0.0

(5) DRAINAGE COEFF(m)=(1.2-.006*avg ann rain)*(1.2-.006*%-200)
(6) SN=.44"AC+.34"BBB+.23"NBBB+m*(.14*UBB+.07*SUBB+.15"SS)
(7)BACKCALCULATED Mr=((FWD Load)*0.2792)/((Dafl. at 60")*60)
(8)PREDICTED PSI LOSS = 2.7[(W/p)/S]*B
where: p= 0.64(SN+1)**9.36

S=[10**(-8.07)]*(Mr**2.32)

B= 0.4 + 1094/[(SN+1)**5.19]

(9) PREDICTED KESALS=(S*((SHRPAPSI/2.7)**(1/B)))*p/1000

(10)R = PREDICTED KESALS / SHA ESTIMATE OF TOTAL KESALS

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
120
0.0
0.0
10.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
48
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.22
1.18
1.36
1.04
1.28
1.32
0.90
1.08
0.90
0.63
0.75
0.78
0.81
0.84
0.66
0.99
1.06
0.65
1.1
0.61
1.12
1.07
1.00
1.05
1.11
0.69
1.12
0.61
0.89
1.07
1.06
0.97
1.19
1.17
0.89
1.16
1.22
1.21
1.16
1.21
1.22
117
0.90
1.06
1.39
0.67
0.89
0.97
1.03
0.75
1.02
0.97
0.85
0.92
0.66
1.36
1.44
1.37
1.37
1.38
127
1.36
1.37

306 |GRAVEL 1 10 9 52 49253| 0.01 27495 15.92
345|GRAVEL 10 36 26 182 47353| 0.01 70916 148.28
543 |ROCK 0 0 O 70232| 0.02 451120 649.02
S525/GRAVEL 0 0 0 479 38037 0.05 771725 410.58
5.68 |SAND 0 0 0 107 29418| 0.06 638862 401.08
345(GRAVEL 0 0 O© 56 81281 0.00 105630 200.97
549[SILT 14 52 38 541 18926 0.04 63905 303.92
675|GRAVEL 0 0 0 223 45273| 001 2380731| 7638.60
581|SAND 12 28 16 526 26791| 0.03 198846 917.31
646 CLAY 14 34 20 902 24517 0.02 76739 701.81
6.34 ICLAY 4 20 16 640 23618 0.04 2583964 3684.57
15.39|CLAY 10 32 22 675 28952{ 0.01 2.17E+09] 153422.73
825[CLAY 14 30 16 652 26770 0.03 17845008 8232.72
393|CLAY 18 38 20 624 16822 0.04 12699 51.28
581[CLAY 29 48 19 858 22035 0.05 536379 802.59
5.19|SILT 4 25 21 625 65939 002 1318192 1040.41
4.88 ISAND 4 21 17 307 33791 0.03 302296 627.93
3.78|CLAY 11 34 23 812 42644 0.00 70232 814.25
661[ROCK . . 0 . 63501| 0.03 247164 92.88
642 /CLAY 22 46 24 834 70410 0.01 3879222| 8953.57
4.15 |SAND 00 0 . 38018 0.07 484951 163.12
6.99 [SAND 0 0 0 6.0 34276 0.04 3295017| 1086.45
6.52 |SAND 0 0 0 221 34435/ 005 1014618 29293
4.16 [SAND 0 0 0 119 41182 0.04 429567 300.28
5.89 [SAND 0 0 0 1.7 35245 0.06 3258313| 1303.12
3.96 [SILT 0 0 0 786 21950 0.04 8968 26.29
4.07 [SILT 0 32232 0.04 23305 25.36
491 SILT 6 49 43 847 29410| 0.02 3117 16.62
6.04 ISILT 3 16 13 466 119790 0.02 10167662 1978.24
4.36 [SAND 0 0 0 71 35135] 0.05 237876 167.13
3.88 [SAND 0 0 O 71 35690| 0.03 391811 590.25
589|GRAVEL 0 0 0 205 45898 0.05 796615 25745
2.79 [SAND 0 0 0O 40 32032 0.00 12612 42.63
2.67 [SAND 0 0 o0 15 44188} 0.00 30165 115.85
3.57 [CLAY 6 19 13 527 194932| 0.00 677461 383.26
5.24 ISAND 0 0 0 44 38195 0.05 305400 21411
243 [SAND 0 0 0 7.5 34465] 0.00 13354 48.12
2.82|SAND 0 0 0 §.7 32762 0.01 35074 50.66
3.19 [SAND 0 0 0 108 23540( 0.02 21053 52.61
5.88 [SAND 0 0 o 6.4 43893| 0.03 6012355| 5793.52
4.22 [SAND 0 0 0 6.2 29689| 0.06 307127 225.36
3.70 [SAND 0 0 0 110 26365 0.05 54139 53.70
497ICLAY 12 26 14 526 19974 0.05 179928 589.62
6.91 [SAND 0 0 0 264 31100| 0.04 1650866| 1248.63
5.24 |SAND 0 0 0 7.0 33940] 0.03 469296 831.81
4.66 |CLAY 14 32 18 733 17856 0.07 105 0.24
4.70 [SAND 2 20 18 30.1 24323| 0.02 4718 33.15
3.61 [SAND 2 9 7 425 34074| 0.02 16400 2747
2.27 [SAND 0 0 0 135 20386 0.00 1294 21.22
152[SAND 10 24 14 549 59467| 0.00 3139 48.63
4.00 [SAND 0 0 0 165 21587f 0.05 7409 16.66
3.80/GRAVEL 10 26 16 325 29688 0.00 17900 471.39
5.58 (GRAVEL 11 27 16 37.8 32717 0.04 355599 415.66
6.66|SAND 26 43 17 342 40403} 0.08 575505 48.75
3A7[SILT 8 32 24 975 28031 o0.01 14639 55.88
6.76 |[SAND 0 0 0 114 44652| 0.03 271713 193.40
1003[ROCK . . o0 . 54325| 0.01 917804478 532711.88
11.23 |[SAND 0 0 0 91 42801| 0.01 1.03E+09| 54335647
6.20 [SAND 0 0 o 9.2 105631{ 0.01 239777384 | 179139.57
5.35 [SAND 0 0 0 69 37031| 0.04 2011739] 226657
5.93/GRAVEL 4 26 22 234 76855| 0.01 24956763 41037.50
5.32 ISAND 0 0 0 1068 24502| 0.05 142939 290.34
5.66 [SAND 0 00 95 32118f 0.04 603108 720.62
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CODES FOR VARIOUS MATERIAL TYPES:
SEAL COATS (SC):2,11,71-73
ASPHALT (AC): 1,319,700

BIT BOUND BASE (BBB): 3,9,10,320-330

(5)DRAINAGE COEFF(m)=(1.2-.006*avg ann rain)*(1.2-.006*%-200)
(6) SN=.44*AC+.34*BBB+.23*NBBB+m*(.14*UBB+.07*SUBB+.15'SS)
(7)BACKCALCULATED Mr=((FWD Load)*0.2792)/({Defl. at 60")*60)

(8)PREDICTED PSI LOSS = 2.7[(W/p)/S]"*B
p= 0.64(SN+1)**9.36

where:

NON BIT BOUND BASE (NBBB): 331,333,334,339,340,730
UNBOUND BASE (UBB): 302-305,308,337
SUBBASE (SUBB): 201-292,306,307
STAB SUBGRADE (SS): 181-183,333,338

= [10**(-8.07)]"(Mr**2.32)

B= 0.4 + 1094/[(SN+1)**5.19]
(9) PREDICTED KESALS=(S*((SHRPAPSI2.7)"*(1/B)))*p/1000
(10)R = PREDICTED KESALS / SHA ESTIMATE OF TOTAL KESALS

PREDIGTED:
NM 351003] 06 67 00 00 69 00 00| 115 406[GRAVEL 6 24 18 27.7 101088 0.00 506768 2172.77
NM 351005] 06 83 00 00 83 00 00| 1.29]| 515|SAND 32219 53 48048; 0.01 3067 15.85
NM 351022 08 55 00 00 108 00 00| 1.30| 4.39SAND 2 20 18 845 30641| 0.02 23551 138.85
NM 351112 08 55 00 00 60 00 00| 1.30] 3.51|SAND 0 0 0 315 51002| 0.00 1366 6.56
NM 352006f 0.7 46 48 00 00 60 00] 1.18| 415SAND 0 0 0 256 14430| 007 15702 52.68
NM 352118 08 103 00 00 190 00 0.0| 1.17| 7.64|SAND 0 0 0 214 35045| 0.04 1694357 358.04
NY 361011 00 99 00 00 156 00 00| 091| 635[GRAVEL 6 22 16 426 69548 0.02 6148063 4912.18
NY 361643 00 22 82 00 00 60 00| 1.11] 422|SAND 0 0 0 113 30562 0.28 184439 10.79
NY 361644] 00 23 63 00 138 00 00| 1.10| 527 SAND 0 0O 5.1 40401 0.03 27859 58.20
NC 371006 0.0 93 00 00 94 00 00| 083 519[SILT 0 0 0 506 19369 0.15 1411 0.42
NC 371024 00 48 00 00 00 120 00| 090 2.86|SAND 6 19 13 349 26709| 0.00 11418 56.26
NC 371028 00 94 00 00 00 00 00| 1.05| 414[SAND 0 0 0 8.7 22832| 0.05 10571 22.24
NC 371030{ 00 87 00 00 00 00 0.0} 1.08] 3.83|SAND 0 0 O 46 21966] 0.04 5757 11.80
NC 371040 00 53 00 00 144 00 00| 064| 3.61SILT 0 0 0 774 21857| 0.08 9422 7.60
NC 371352 00 63 00 00 60 00 00| 067 3.33[SILT 16 45 29 773 81096| 0.00 170941 222.72
NC 371645 00 79 00 70 00 00 00| 1.10| 5.09[SAND 0 0 0 45 32351 0.04 1461 268
NC 371801 00 72 00 00 120 00 00] 0.90| 4.67SILT 0 24 24 433 35838) 0.09 204424 53.18
NC 371802 00 45 00 00 82 00 00| 080] 290[SAND 16 44 28 567 29818| 0.00 4174 14.22
NC 371803 00 52 00 00 00 132 00| 0.65] 2.89|SILT 0 0 0 775 31765| 0.02 12300 7.96
NC 371814 00 51 00 00 00 138 00] 0.83| 3.05|SAND 6 32 26 413 20225| 0.04 5791 3.85
NC 371817 00 43 00 00 00 120 0.0] 0.86| 2.62[SILT 0 0 0 456 35932} 0.00 12161 69.03
NC 372819 00 49 00 82 72 00 00| 080 485(SityClay 12 39 27 561 26989| 0.04 37608 88.71
NC 372824! 00 47 00 60 00 00 00| 1.09| 345[SLT 0 24679 0.03 1164 1.92
ND 382001] 02 48 00 126 56 00 00| 099 578]SAND 14 30 16 484 12303 0.14 82211 51.67
OK 404086 03 52 79 00 00 01 0.0f 063 498[SILT 0 0 0 952 24433| 043 5406 143
OK 404161 09 97 00 00 00 00 0.0[ 0.96| 4.27[SAND 0 0 0 330 19828] 0.08 9745 11.38
OK 404164 00 46 76 00 00 00 00| 1.06f 461|SAND 210 8 284 32705| 0.06 32518 19.32
OK 404165 00 81 00 00 00 00 00| 1.04( 3.56|SAND 0 0 0 291 34771| 0.04 70127 45.65
PA 421507 00 64 00 00 162 008 00} 0.93| 493|CLAY 6 28 22 466 83605| 0.01 9991264| 56812.41
PA 421599 00 123 00 00 120 00 00| 085) 685|GRAVEL 6 26 20 484 54444 0.01 8296450| 4903948
PA 421605 00 81 00 00 00 168 00| 0.96] 469(GRAVEL 8 26 18 30.6 62860| 0.04 2994304 876.84
SC 451008f 00 37 00 00 78 00 00| 091| 262|SAND 4 32 28 454 29917| 0.00 10124 21.01
SC 451011 00 32 00 00 104 00 00| 1.00( 2.83|SAND 0 0 0 148 38384| 002 24500 9.67
SC 451024 00 16 00 00 48 00 00| 096) 1.35[SAND 15 36 21 272 69319} 0.0 2505 371.05
SC 451025f 00 11 00 00 83 00 00| 086 1.49|SAND 0 0 0 453 22885| 0.00 336 5.18
TN 471023 00 54 61 00 60 00 00} 0.74| 507|CLAY 20 40 20 59.7 58671| 0.10 984710 63.07
TN 471028| 08 113 00 00 38 00 00| 0.73| 536[CLAY 32 60 28 708 78314] 001 3802580( 15624.70
TN 471029 00 28 129 00 64 00 00| 080{ 6.30[SAND 12 33 21 411 76633| 0.01 4787752; 13109.99
TN 472001} 09 68 00 45 00 00 00| 059] 403[CLAY 12 32 20 879 26232| 0.02 28401 106.25
TN 472008 00 116 00 93 00 00 00} 056| 7.24|CLAY 6 28 22 929 39527 0.03 31442537| 14222.89
TN 473075 00 S50 00 00 92 00 00| 083| 3.27[GRAVEL 4 34 30 393 12961| 0.11 5489 9.09
TN 473101 06 89 00 00 55 00 00| 065} 442[CLAY 26 52 26 776 51485| 0.01 702963) 2597.87
TN 473104] 00 13 00 00 87 00 00| 0.78| 152|CLAY 10 30 20 58.0 64399| 0.0 4139 213.73
TN 479024 06 51 74 00 00 00 00| 099 466|GRAVEL 6 20 14 117 126954| 0.00 11766962 58983.98
TN 479025 08 37 23 00 120 00 0.0 1.06} 4.19ROCK 6 20 14 . 162048] 0.00 8184753| 33417.69
TX 481039 00 74 00 00 140 00 7.8| 064| 526[CLAY 32 56 24 909 26397 0.09 0 0.00
TX 481047 00 100 00 00 153 00 144] 077| 7.71|CLAY 22 40 18 796 29732| 0.05 8482389| 1437.05
TX 481048 00 110 00 00 00 00 00| 1.20| 4.84 SAND 0 0 0 199 26963| 0.06 171542 204.52
TX 481049 05 46 00 112 00 00 7.8| 084] 558|SAND 14 48 34 492 42049| 0.06 514537 156.74
TX 481050/ 08 10 00 00 96 00 65| 081| 231/CLAY 20 40 20 614 25375| 0.00 37173 9.28
TX 481056 04 18 00 00 144 00 00| 1.18| 3.16[CLAY 19 34 15 187 21361| 0.06 10951 9.97
TX 481060 00 75 00 00 123 00 6.0 1.00{ 592[SAND 4 20 16 340 20622] 0.06 80339 93.64
TX. 481065/ 03 83 00 00 48 00 02| 0.70| 412|CLAY 22 40 18 932 24972| 0.10 146271 7263
TX 481068 00 109 00 00 60 00 80} 068 6.18]CLAY 20 38 18 740 29460 0.03 27356 54.73
TX 481069 00 95 00 00 00 00 65| 063 4.79[CLAY 41 72 31 931 20945| 0.09 0 0.00
TX 4810701 00 105 00 00 00 00 10.0| 064} 559CLAY 41 66 25 899 33698{ 0.07 0 0.00
TX 481076] 00 54 00 00 84 00 00| 1.19) 3.78[SAND 0 0 0 177 38053| 004 69127 44.80
TX 481077 00 51 00 00 104 0.0 00] 0.88] 3.52{SULT 0 0 0 627 26725/ 008 31248 16.32
TX 481087| 03 69 00 00 72 00 00| 1.06] 4.11SAND 0 0 O 9.4 572421 0.04 59379 19.22
TX 481092 04 20 07 00 125 00 00| 0.82} 255[SILT 12 39 27 686 34306 0.00 12133 20.30
TX 481094] 00 19 00 00 84 00 00| 1.01| 202[SAND 12 29 17 334 70128| 0.0 19760 139.39
TX 481096f 00 71 00 00 81 00 00} 076 3.99/CLAY 22 50 28 785 23264| 0.06 19748 2421
TX 481109| 00 63 00 00 00 0.0 65| 0.73] 348[CLAY 25 52 27 70.7 29599| 0.05 9347 6.80
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CODES FOR VARIOUS MATERIAL TYPES:

SEAL COATS (SC):2,11,71-73
ASPHALT (AC): 1,319,700

BIT BOUND BASE (BBB): 3,9,10,320-330

NON BIT BOUND BASE (NBBB): 331,333,334,339,340,730

UNBOUND BASE (UBB): 302-305,308,337
SUBBASE (SUBB): 201-292,306,307
STAB SUBGRADE (SS): 181-183,333,338

(5)DRAINAGE COEFF (m)=(1.2-.006*avg ann rain)*(1.2-.006*%-200)
(6) SN=.44*AC+.34*BBB+.23*NBBB+m*(14*UBB+.07*SUBB+.15"SS)
(7)BACKCALCULATED Mr=((FWD Load)*0.2792)/((Defl. at 60")*60)
(8)PREDICTED PSI LOSS = 2.7[(W/p)/S]B
where: p= 0.64(SN+1)"9.36

S= [10"(-8.07)]*(Mr~2.32)

B= 0.4 + 1094/[(SN+1)**5.19]

(9) PREDICTED KESALS=(S*((SHRPAPSI/2.7)**(1/B)))*p/1000

(10)R = PREDICTED KESALS / SHA ESTIMATE OF TOTAL KESALS

920005588 883333333555555 IR ANRANNARIARRARRARIARS

PEI|
PEI
PEI
QE
QE
QE
QE
SK
SK

481111
481113
481122
481130
481168
481169
481174
481178
481181
481183
482108
482172
483609
483669
483679
483689
483729
483739
483749
483855
483865
489005
491001
501002
501004
511002
511023
512004
512021
531002
531801
541640
561007
562018
562019
562020
562037
567773
811803
811804
811805
812812
831801
836454
841802
871620
871622
871680
871806
872811
872812
881645
881646
881647
891021
891125
891127
892011
901802
906405

05
0.7
04
04
04
08
0.0
0.0
06
04
0.0
0.9
0.3
0.0
0.0
04
0.0
03
03
05
04
04
04
0.0
0.0
0.0
0.0
0.0
0.0
03
0.0
0.0
0.0
0.9
0.8
0.8
0.2
06
0.0
03
03
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

6.9
08
3.0
23
0.8
11
4.7
85
6.3
53
3.0
10.0
3.9
43
16
2.7
10.0
15
15
0.9
1.9
11
5.1
83
8.0
5.7
10.1
74
75
43
9.2
153
28
49
34
42
34
4.0
45
3.2
6.8
5.6
44
10.7
109
5.0
5.6
10.3
56
3.2
28
64
9.6
6.9
5.2
5.2
49
3.0
7.3
28

0.0
0.0
14.2
11.2
6.9
0.0
0.0
0.0
33
0.0
1.2

134
117
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

10.5
114
8.1
16.8
175
0.0
58
258
0.0
0.0
6.0
0.0
36
8.0
5.0
0.0
6.2
0.8
85
0.0
0.0
19.9
11.0
224
84
0.0
18.8
0.0
18.6
0.0
6.6
3.0
74
0.0
0.0
33
0.0
55
15.0
14.1
164
40.7
0.0
9.0

30.0
234
0.0
0.0
0.0

0.0
0.0
0.0
8.0
0.0
0.0
0.0
45
59
0.0
6.5
0.0
0.0
7.9
0.0
6.0
54
74
88
6.0
0.0
0.0
0.0
0.0
0.0
0.0
84
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
6.5
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

1.02
0.77
1.13
0.70
0.86
1.08
0.83
0.76
0.85
0.88
0.76
0.99
0.68
0.82
0.74
0.83
0.65
1.23
0.96
1.03
0.89
0.84
1.24
1.10
0.82
0.87
0.57
0.82
0.76
0.90
0.76
0.93
1.19
0.92
125
125
1.12
1.21
0.98
0.72
0.94
1.02
1.15
1.04
1.05
0.69
0.84
0.80
0.74
0.7
0.69
0.96
0.93
0.82
1.11
1.04
1.03
0.86
0.92

1.18

10 25 15 440 33225| 0.05 208330 150.47
14 35 21 571 65181 0.00 4276 5.20
6 13 7 193 76273 0.01 152688 209.53
30 53 23 817 24692 0.05 77947 89.52
312 9 438 36955| 0.00 1267 170.39
0 0 0 265 28817 313 0.21
34 55 21 640 14323| 020 521 0.36
26 49 23 726 25779 0.03 274628| 148754
18 44 26 65.0 19679 0.15 16877 6.88
12 27 15 633 29417 0.05 24930 10.87
18 39 21  67.0 26228 0.02 56832 527.68
10 24 14 475 32026| 0.04 28508 8.68
22 42 20 926 22539] 0.02 4083 5.19
16 33 17 546 28068 0.05 74094 118.00
16 30 14 664 18306 0.01 4156 15.53
6 20 14 497 86122 0.00 1067459| 3449.62
26 46 20 954 20074| 0.09 41 0.02
0 0 0 53 20123 0.12 45983 29.89
20 38 18 49.0 23634{ 0.05 9781 7.66
3.75[GRAVEL 7 25 18 221 111401| 0.01 847123 513.88
6 21 15 56.7 54800| 0.01 67860 49.07
21 38 17 63.7 35726] 0.04 146 i1
0 0 0 204 24190f 0.02 4972 10.25
764|GRAVEL 0 0 O 6.9 24379| 0.02 16215542 40466.79
17 28 11 653 44037| 0.01 10544047| 42822.24

46.8 40537 0.01 67021 50.55
97.2 37382 0.09 1731023 261.58
531 13142| 0.15 32777 37.21
58.2 14988| 0.11 11580 14.57
63.1 87908] 0.00 312736 928.16
18.7 69989 0.01 453771 674.70
349 37399 0.01 55958007| 97424.73
273 33985| 0.00 5070 18.98
649 27194| 0.04 40543 7297

NN -
dbOoO
- -
m§0ao

N
(=10
-
[~

CoocbLbOOOOMO
-
o2
- -
o o

17 8 140 33919] 0.02 800353| 1294.12

4.72]GRAVEL 17 30 13 129 37271] 0.03 54528 91.74
6 22 16 396 40778 0.02 196080 852.35

0 0 0 236 42073 0.01 2805 45.97

0 0 0 500 27443| 0.04 2716 3.15

24 40 16 895 15526| 0.08 4487 7.93

4.23|SiltyClay 13 28 15 586 17782 0.12 9591 8.09
346 (GRAVEL 19 34 15 463 29332| 0.01 90312 808.97
0 0 0 254 21779 007 136301 175.37

0 0 0 400 23858{ O0.11 702621 313.30

0 0 0 152 31018 003 14343894| 6607.59

424 20 796 17831| 0.11 23199 2037

0 0 0 482 40949| 005 1215292 711.88

0 8 8 665 46170 0.03 3615125| 333547

0 0 0 756 44588 003 889565 820.75

8 26 18 792 41790 0.04 113857 83.97

14 28 14 78.7 30430{ 0.07 10568 5.30

0 0 0 335 49695| 0.01 13456994| 24703.78

0 0 0 376 39444| 0.01 437658| 1073.86

4 24 20 526 61608 0.01 5927829 20082.13

0 0 0 6.1 23875] 0.12 178872 73.06

0 0 0 137 29598/ 0.07 7624609| 1731.25

1 8 7 183 34956| 0.02 9543024| 31181.53

0 0 0 403 37704| 002 14050995| 19864.49

16 32 16 608 16028| 0.25 11159 529

2 10 8 226 29086] 0.02 22295 28.62
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Appendix B

Sections and Corresponding Data Utilized in Evaluation of
the AASHTO Rigid Pavement Equation
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Appendix C

Sections and Corresponding Data Utilized in Evaluation of
the AASHTO Overlay Design Procedures
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